2017-02-22
收藏
1.单调性问题
研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。
2.极值问题
求函数y=f(x)的极值时,要特别注意f‘(x0)=0只是函数在x=x0有极值的必要条件,只有当f‘(x0)=0且在xx0时,f‘(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时,在x=x0处也可能有极值,例如函数f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。
还要注意的是,函数在x=x0有极值,必须是x=x0是方程f‘(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f‘(x)=0所求的驻点是否在函数的定义域内。
3.切线问题
曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f‘(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展理性思维。关于切线方程问题有下列几点要注意:
(1)求切线方程时,要注意直线在某点相切还是切线过某点,因此在求切线方程时,除明确指出某点是切点之外,一定要设出切点,再求切线方程;
(2)和曲线只有一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线;
(3)两条曲线的公切线有两种可能,一种是有公共切点,这类公切线的特点是在切点的函数值相等,导数值相等;另一种是没有公共切点,这类公切线的特点是分别求出两条曲线的各自切线,这两条切线重合。
4.函数零点问题
函数的零点即曲线与x轴的交点,零点的个数常常与函数的单调性与极值有关,解题时要用图像帮助思考,研究函数的极值点相对于x轴的位置,和函数的单调性。
5.不等式的证明问题
证明不等式f(x)≥g(x)在区间D上成立,等价于函数f(x)-g(x)在区间D上的最小值等于零;而证明不等式f(x)>;g(x)在区间D上成立,等价于函数f(x)-g(x)在区间D上的最小值大于零,或者证明f(x)min≥g(x)max、f(x)min>;g(x)max.因此不等式的证明问题可以转化为用导数求函数的极值或最大(小)值问题。
新课标六年级数学下册《综合应用》练习题
新课标三年级数学下学期《年、月、日》同步试题
人教版六年级数学下册《比和比例》同步试题
新人教版二年级下册数学第八单元自测考试卷
新课标一年数学下册《简单的计算》一课一练
人教版三年级下册数学第七单元自测试卷
新课标三年级数学下册《解决问题》同步试题
人教版三年级下学期数学期末自测综合题
人教版三年数学下册水平能力测试卷
人教新课标三年级下册数学第七单元测试卷
新课标一年数学下册《简单的计算》同步试题
三年级数学下册口算专项练习题(在线做)
人教版三年级下册数学第二单元测试卷
人教版三年级下册数学《统计》测试卷
三年级数学下册趣味数学考试题
三年级数学下册智力水平竞赛试题
新人教版二年级下册数学第七单元达标测试卷
新人教版二年级数学下册期中模拟题
人教版三年级数学下册期末实战测试卷
人教版六年级数学下册《图形的认识与测量》综合练习
人教版六年级数学下册应用题
人教版三年级下册数学期中质量监测试题
新人教版二年级下册数学期中阶段性试题
人教版三年级数学下册期末总复习试卷
小学一年级下册数学综合能力能力测试卷
人教版六年级数学下册《图形的认识与测量》同步试题
人教版二年数学下册期末质量检测试卷
人教版六年级数学下册毕业考试模拟试题
新课标三年数学下册《24时计时法》同步练习
人教版三年级数学下册学业评估复习题
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |