2015-07-29
收藏
十字相乘法虽然比较难学,但是学会了它, 用十字相乘法来解题的速度比较快,能够节约时间,而且运算量不大,不容易出错。它在分解因式/解一元二次方程中有广泛的应用:
十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
例1 把m+4m-12分解因式
分析:本题中常数项-12可以分为-112,-26,-34,-43,-62,-121当-12分成-26时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m+4m-12=(m-2)(m+6)
例2 把5x+6x-8分解因式
分析:本题中的5可分为15,-8可分为-18,-24,-42,-81。当二次项系数分为15,常数项分为-42时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x+6x-8=(x+2)(5x-4)
例3 解方程x-8x+15=0
分析:把x-8x+15看成关于x的一个二次三项式,则15可分成115,
35。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x-5x-25=0
分析:把6x-5x-25看成一个关于x的二次三项式,
则6可以分为16,23,-25可以分成-125,-55,-251。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
用十字相乘法解一些比较难的题目:
例5 把14x-67xy+18y分解因式
分析:把14x-67xy+18y看成是一个关于x的二次三项式,
则14可分为114,27, 18y可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x-67xy+18y= (2x-9y)(7x-2y)
例6 把10x-27xy-28y-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x-27xy-28y-x+25y-3
=10x-(27y+1)x -(28y-25y+3)
4y -3
7y ╳ -1
=10x-(27y+1)x -(4y-3)(7y -1)
2 -(7y 1)
5 ╳ 4y - 3
=[2x -(7y -1)][5x +(4y -3)]
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把
10x-(27y+1)x -(4y-3)(7y -1)分解为:[2x -(7y -1)][5x +(4y -3)]
解法二、10x-27xy-28y-x+25y-3
2 -7y
5 ╳ 4y
=(2x -7y)(5x +4y)-(x -25y)- 3
2 x -7y 1
5 x +4y ╳ -3
=[(2x -7y)+1] [(5x +4y)-3]
=(2x -7y+1)(5x +4y -3)
说明:在本题中先把10x-27xy-28y用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x +4y)-3].
例7:解关于x方程:x- 3ax + 2aab -b=0
分析:2aab-b可以用十字相乘法进行因式分解
解:x- 3ax + 2aab -b=0
x- 3ax +(2aab - b)=0
1 -b
2 ╳ +b
x- 3ax +(2a+b)(a-b)=0
1 -(2a+b)
1 ╳ -(a-b)
[x-(2a+b)][ x-(a-b)]=0
所以 x1=2a+b x2=a-b
两种相关联的变量之间的二次函数的关系,可以用三种不同形式的解析式表示:一般式、顶点式、交点式交点式.利用配方法,把二次函数的一般式变形为 :
Y=a[(x+b/2a)2-(b2-4ac)/4a2]
应用平方差公式对右端进行因式分解,得
Y=a[x+b/2a+b2-4ac/2a][x+b/2a-b2-4ac/2a]
=a[x-(-b-b2-4ac)/2a][x-(-b+b2-4ac)/2a]
因为一元二次方程ax2+bx+c=0的两根分别为x1,x2=(-bb2-4ac)/2a
所以上式可写成y=a(x-x1)(x-x2),其中x1,x2是方程ax2+bx+c=0的两个根
因x1,x2恰为此函数图象与x轴两交点(x1,0),(x2,0)的横坐标,故我们把函数y=a(x-x1)(x-x2)叫做函数的交点式.在解决二次函数的图象和x轴交点坐标有关的问题时,使用交点式较为方便。二次函数的交点式还可利用下列变形方法求得:
设方程ax2+bx+c=0的两根分别为x1,x2
根据根与系数的关系x1+x2=-b/a,x1x2=c/a,
有b/a=-(x1+x2),c/a=x1x2
y=ax2+bx+c
=a[x2+b/a*x+c/a]
=a[x2-(x1+x2)x+x1x2]
=a(x-x1)(x-x2)
2016人教B版选修1-2高中数学1.2《回归分析》ppt课件(2)
2015-2016学年高中数学人教B版选修1-2第二章2.1《综合法与分析法》ppt课件
2016人教B版选修1-2高中数学第四章《框图》ppt课件
人教B版选修1-2高中数学1.1《独立性检验》ppt课件1
人教B版选修1-1高中数学3.3.1《利用导学判断函数的单调性》ppt课件
人教B版选修1-1高中数学3.2.3《导学的四则运算法则》ppt课件
2015-2016学年高中数学人教B版选修1-2第三章2.2《复数的乘除运算》ppt课件
2015-2016学年高中数学人教B版选修1-2第一章2《独立性检验的基本思想及初步应用》ppt课件
人教B版选修1-1高中数学3.1.2《瞬时速度与导学》ppt课件
人教B版选修1-2高中数学1.1《独立性检验》ppt课件4
2016人教B版选修1-2高中数学3.1.2《复数的引入》ppt课件(2)
2016人教B版选修1-2高中数学2.2.2《反证法》ppt课件(1)
人教B版选修1-1高中数学3.1.1《函数的平均变化率》ppt课件
人教B版选修1-1高中数学3.1.3《导数的几何意义》ppt课件
人教B版选修1-1高中数学3.3.3《导数的实际应用》ppt课件
2015-2016学年高中数学人教B版选修1-2第三章1.1《数系的扩充与复数的概念》ppt课件
2016人教B版选修1-2高中数学2.2.2《反证法》ppt课件(2)(1)
人教B版选修1-1高中数学3.1.1《函数的平均变化率》ppt课件 (2)
2016人教B版选修1-2高中数学2.2.1《综合法与分析法》ppt课件(2)
人教B版选修1-1高中数学3.1.3《导学的几何意义》ppt课件
人教B版选修1-1高中数学3.3.3《导学的实际应用》ppt课件
人教B版选修1-2高中数学1.2《回归分析》ppt课件1
2016人教B版选修1-2高中数学2.1.2《演绎推理》ppt课件(1)
2015-2016学年高中数学人教B版选修1-2第二章2.2《反证法》ppt课件
人教B版选修1-2高中数学1.1《独立性检验》ppt课件2
人教B版选修1-1高中数学3.3.1《利用导数判断函数的单调性》ppt课件
2016人教B版选修1-2高中数学3.2.1《复数的加法和减法》ppt课件(1)
人教B版选修1-1高中数学3.2.1 2《常数与幂函数的导学 导学公式表》ppt课件
人教B版选修1-1高中数学2.3.2《抛物线的几何性质》ppt课件
人教B版选修1-1高中数学3.2.1《导数的四则运算法则》ppt课件
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |