2016-10-28
收藏
阿灵顿、布明汉和坎顿韦尔这三个城市,它们的形状都呈长方形。(1)每个城市沿边界街段(指两条平行街道之间的一段街道)的数目都是整数,而且市内街段总是都与沿边界的街段平行。
(2)沿城市北部边界的街段的数目,阿灵顿最少,布明汉比阿灵顿多3段,坎顿韦尔又比布明汉多3段。
(3)有两个城市,它们市内街段的数目,等于沿整个边界的街段的数目。
哪个城市其市内街段的数目不等于沿整个边界的街段的数目?
(提示:列出表示一个城市沿整个边界的街段的数目的代数式和表示市内街段的数目的代数式;然后求出使两者相等的整数解。)
答案:
如上图所示,对于{(3)有两个城市,它们市内街段的数目,等于沿整个边界的街段的数目。}中所指的两个城市,以X代表其长方形城区一条边界上的街段数目,以Y代表另一条边界上的街段数目。于是整个边界的街段数目等于
X+Y+X+Y,即2X+2Y
而市内街段的数目等于
X(Y-1)+Y(X-l),即(XY-X)+(XY-Y)
根据(3),对于两个城市而言
2X+2Y=XY-X+XY-Y
解出X,
X=3Y/(2Y—3),
解出Y,
Y=3X/(2X-3)。
这表明X和Y都得大于l。依次设Y为2、3、4、5、6和7,得出下列数值:
YX
26
33
412/5
57/15
62
721/11
既然X必须大于1,而且根据{(1)每个城市沿边界街段(指两条平行街道之间的一段街道)的数目都是整数,而且市内街段总是都与沿边界的街段平行。}必须是整数,那么除了上列中的整数之外,X再也没有别的整数值了。
根据(l)和上列数值,这两个城市沿一侧边界的街段数目都
是2、3或6。根据{(2)沿城市北部边界的街段的数目,阿灵顿最少,布明汉比阿灵顿多3段,坎顿韦尔又比布明汉多3段。},沿北部边界,阿灵顿有3个街段,布明汉有6个街段,坎顿韦尔有9个街段。
由于沿北部边界有9个街段的城市,不可能满足表示条件(3)的方程,所以坎顿韦尔就是那个市内街段数目不等于沿边界街段数目的城市。
总而言之,阿灵顿的沿边界街段和市内街段的数目都是12,而布明汉的这两个数目都是16。
七年级数学上册复习测试题2
七年级数学猜想证明同步练习
七年级数学从不同方向观察立体图形同步试题
用一元一次方程解决实际问题水平测试题
有效数字和科学记数法同步试题2
七年级数学近似数测试题
七年级数学频数分布表和频数分布直方图练习题
七年级数学二元一次方程同步练习2
用二元一次方程组解决问题同步练习2
七年级数学二元一次方程组的应用同步练习2
七年级数学不等式的解集同步练习
七年级数学上册复习测试题1
有效数字和科学计数法同步试题1
用数轴上的点表示有理数有理数大小比较练习2
用数轴上的点表示有理数有理数大小比较练习1
七年级数学反比例函数的图象性质和应用同步试题
七年级数学二元一次方程组和它的解同步练习
用二元一次方程组解决问题同步练习3
用一次方程(组)解决问题水平测试
用代入消元法解二元一次方程组同步练习
七年级数学上册复习测试题3
七年级数学分式同步练习
七年级数学二元一次方程同步练习1
七年级数学上册同步检测题
七年级数学合并同类项水平测试2
七年级数学二元一次方程同步练习3
七年级数学二元一次方程和它的解同步练习
用数轴上的点表示有理数随堂练习
有效数字和科学记数法同步试题3
七年级数学分式方程同步练习
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |