有名的牛吃草的问题_趣味数学 - 查字典数学网
数学有名的牛吃草的问题
首页>数学杂谈>趣味数学>有名的牛吃草的问题

有名的牛吃草的问题

2016-10-28 收藏

牛顿的名著《一般算术》中,还编有一道很有名的题目,即牛在牧场上吃草的题目,以后人们就把这种应用题叫做牛顿问题。

“有一片牧场的草,如果放牧27头牛,则6个星期可以把草吃光;如果放牧23头牛,则9个星期可以把草吃光;如果放牧21头牛,问几个星期可以把草吃光?”

解答这道题时,我们假定牧草上的草各处都一样密,草长得一样快,并且每头牛每星期的吃草量也相同。

你会解这道题吗?

分析与解 在牧场上放牛,牛不仅要吃掉牧场上原有的草,还要吃掉牧场上新长出的草。因此解答这道题的关键是要知道牧场上原有的牧草量和每星期草的生长量。

设每头牛每星期的吃草量为1。

27头牛6个星期的吃草量为27×6=162,这既包括牧场上原有的草,也包括6个星期长的草。

23头牛 9个星期的吃草量为 23×9= 207,这既包括牧场上原有的草,也包括9个星期长的草。

因为牧场上原有的草量一定,所以上面两式的差207-162=45正好是9个星期生长的草量与6个星期生长的草量的差。由此可以求出每星期草的生长量是45÷(9-6)=15。

牧场上原有的草量是162-15×6=72,或207-15×9= 72。

前面已假定每头牛每星期的吃草量为1,而每星期新长的草量为15,因此新长出的草可供15头牛吃。今要放牧21头牛,还余下21-5=6头牛要吃牧场上原有的草,这牧场上原有的草量够6头牛吃几个星期,就是21头牛吃完牧场上草的时间。72÷6=12(星期)。

也就是说,放牧21头牛,12个星期可以把牧场上的草吃光。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限