《工程问题》教学设计 _教学设计 - 查字典数学网
数学《工程问题》教学设计
首页>数学教研>教学设计>《工程问题》教学设计

《工程问题》教学设计

2015-07-14 收藏

教学内容:人教版小学数学教材六年级上册第42~43页例7及相关练习。

教学目标:

1.让学生经历用“假设法”解决分数工程问题的过程,理解并掌握把工作总量看作单位“1”的分数工程应用题的基本特点、解题思路和解题方法。

2.通过猜想验证、自主探究、评价交流等学习活动,培养学生分析、比较、综合、概括的能力。

教学重点:认识工程问题的特点,掌握其数量关系、解题思路和方法。

教学难点:学会用“工程问题”的方法解决实际问题。

教学准备:课件。

教学过程:

一、复习旧知

师:今天,我们将继续解决生活中的数学问题。先来看看,你能解决下面的问题吗?(ppt课件出示。)

(1)修一条360米的公路,甲队修12天完成,平均每天修多少米?

360÷12=30(米)。

师:你是怎样列式的?为什么?(教师板书:工作总量÷工作时间=工作效率。)

(2)修一条360米的公路,甲队每天修18米,多少天能完成?

360÷18=20(天)。

师:你是怎样列式的?为什么?(教师板书:工作总量÷工作效率=工作时间。)

(3)加工一批零件,计划8小时完成,平均每小时加工这批零件的几分之几?

1÷8=。(师:你是根据什么来列式的?)

(师小结:不知道工作总量时,我们可以用单位“1”来表示,相对应的工作效率就用时间分之一来表示。)

(4)一项工程,施工方每天完成,几天可以完成全工程?

=6(天)。(师:你又是根据什么来列式的?)

【设计意图】小学生学习数学的过程就是新知识同原有知识相互作用,发展形成新的数学认识结构的过程。因此,在复习准备阶段,设计了上述4道基本练习题,帮助学生激发原有的知识记忆,使学生能进一步熟练运用工作总量、工作时间、工作效率这三个量之间的关系解决实际问题,并适当渗透工作总量、工作效率不是具体的数量时应该怎样表示,为学习新知做好铺垫。

二、创设情境,设疑导入

为了建设新农村,各地都在进行乡村公路的建设。张村也准备新修一条公路。两个工程队,一队单独修12天完成,二队单独修要18天完成。(ppt出示。)

师:从以上条件,我们可以获得什么信息?

(预设:一队每天修这条公路的;二队比一队多用6天完成;二队每天修这条公路的……)

师:假如你是负责人,你会承包给谁?为什么?

如果要修得又快又好,怎么办?

(预设:让甲队修;可以让两个队一起修。)

师:如果两队合修,多少天能修完?(PPT出示完整题目。)

张村准备新修一条公路。两个工程队,一队单独修12天完成,二队单独修要18天完成。如果两队合修,多少天能修完?

【设计意图】教材中的例题设计了学生熟悉的修路情境,合理利用情境激发学生的学习兴趣,逐步展开,并在设疑中生成有教学价值的问题——“如果两队合修,多少天能修完”,展开新课教学。

三、猜想验证,合作探究

(一)猜想。

师:请同学们先猜一猜两个队一起修路,大约几天能修完?(教师随机板书学生所说的天数。)

师:在这些天数中,哪些天数可以排除?你是怎样想的?(得出“两队合修的天数比12天少”的结论。)

(二)讨论。

师:到底是几天呢?观察题目,想一想,要知道合修的时间,需要知道什么?

(预设:需要知道工作总量和工作效率。)

师:可这里的工作总量(也就是道路全长)是未知的,怎么解决?

可以假设道路全长是多少?

根据学生的回答,老师随机板书假设的长度(预设单位“1”,如36千米等。如果是假设具体数量,考虑12和18的公倍数会方便些)。

师:请你选择其中一个道路全长的值,试一试解决这道题吧。

(三)验证,辨析各种解法。

1.学生用假设法解题,老师巡视,抽取不同假设的同学板书演示。

2.全班交流评价各种方法,让学生说说自己解决的思路与方法。

预设:(1)假设道路全长36千米,36÷(36÷12+36÷18)=7.2(天);

(2)假设道路全长720米,720÷(720÷12+720÷18)=7.2(天);

(3)假设道路全长为单位“1”,1÷=(天)。

对于假设具体数据的解法,分析一种,让学生说一说数量关系。(先分别求出两队的效率,再用工作总量除以合作工作效率,即两队效率之和,求出合作修路所需的工作时间。)

对用单位“1”及分率解题的方法,老师结合PPT进行重点追问:

这里的1指什么,各指什么?代表什么?为何用1÷?

请学生结合工作总量、工作效率与工作时间的关系说一说。(同桌互相讨论这种解法的思路。)

预设:如果有同学用1÷(1÷12+1÷18),肯定并说明可以直接写作的形式。

【设计意图】猜想与验证是学生自主探究的有效方法,让学生发散思维,在猜测中预测结果,提高学生参与验证的热情。另外,因为学生的认知基础不同,允许验证的方法多样化,对于正确的答案都能给予肯定,让学生享受成功的喜悦。

(四)小结建模,策略优化。

1.同学们各自假设的道路总长不同,但答案都是7.2天,说明什么?

(说明完成时间和道路总长没有关系。)

在道路总长发生变化的时候,哪些量在变,哪些量没有变?

引导小结:他们单独修的时间不变,无论假设道路全长是多少,两个队每天修的始终占道路全长的.

也就是说对这条公路的全长而言,他们每天修路的米数在变化,但他们每天修这条路的“几分之几”没有变。

2.比较这几种解法,哪种解法更简便一些?

小结 :这道题没有给出具体的工作总量,我们可以把工作总量看作单位“1”。

根据“一队单独修12天完成”可知一队每天修全长的(也就是一队的工作效率),根据“二队单独修18天完成”可知二队每天修全长的

(也就是二队的工作效率),所以表示两队工作效率之和。

用工作总量单位“1”除以工作效率之和,即可求得两队合修所需的工作时间。

【设计意图】在验证过程中,学生发现“工作总量变了,工作时间还是不变”,教师要引导学生悟出其中的算理,使每一个学生自主有效地形成新知。从上一环节的算法多样化,到这一环节的方法小结优化,使学生的思维“量”“质”兼备。

(五)点明课题:这就是我们今天要学习的“工程问题”(板书课题)。

(六)针对性练习。

师:咱们一起来试试解题吧!(ppt出示教材第43页“做一做”。)

交流解题方法,说一说“把工作总量看作单位1,效率就是次数分之一”。(PPT直观演示线段图。)

【设计意图】发挥多媒体计算机辅助教学的优势,出示情境,绘制线段图,为学生提供形象直观的演示,让学生在观察、比较中解决疑难问题,进一步突破本课教学难点,提高教学效率。

四、实践应用

(一)辨析性练习

判断题。

(在正确算式后面的括号内打“√”,错误算式后面的括号内打“×”。并说明理由。)

解答时出现了如下几种列式:

①300÷(8+10)……( ); ②300÷(300÷8+300÷10)……( );

③300÷……( );

④1÷(300÷8+300÷10)…… ( );

⑤1÷……( )。

【设计意图】学生对知识的理解容易出现片面性和笼统性,会把刚学的新知识与相似的旧知识混淆,通过辨析,进一步明确工作总量和工作效率必须要相对应,从而促进学生对工程问题本质特征的理解。

(二)变式训练,类推应用

1.甲车从A城市到B城市要行驶2小时,乙车从B城市到A城市要行驶3小时。两车同时分别从A城市和B城市出发,几小时后相遇?

(改变问题情境,将工程问题转化为行程问题。)

2.某水库遭遇暴雨,水位已经超过警戒线,急需泄洪。这个水库有两个泄洪口。只打开A口,8小时可以完成任务,只打开B口,6小时可以完成任务。如果两个泄洪口同时打开,几小时可以完成任务?

【设计意图】通过变式训练,引导学生寻找知识间的联系,进行迁移、类推,加强学生对本节课的理解与对知识的消化,有效巩固工程问题的解题思路和解题方法,从而提高解题能力。

五、全课总结

说一说本节课你有什么收获?

今天学习工程问题,这类题目的特点是:①把工作总量看作单位“1”;②谁几天完成,谁的工作效率就是几分之一;③用工作总量除以工作效率和就得到工作时间。

六、课外作业

1.教材第45页第6题;

2.阅读教材第45页“你知道吗”内容。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限