哥德巴赫猜想_趣味数学 - 查字典数学网
数学哥德巴赫猜想
首页>数学杂谈>趣味数学>哥德巴赫猜想

哥德巴赫猜想

2016-10-27 收藏

哥德巴赫是德国数学家。

1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。

在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:

我的问题是这样的:

随便取某一个奇数,比如77,可以把它写成三个素数之和:

77=53+17+7;

再任取一个奇数,比如461,

461=449+7+5,

也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。

但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。

欧拉回信说,这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。

不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:

2N+1=3+2(N-1),其中2(N-1)4.

若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。

但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。

现在通常把这两个命题统称为哥德巴赫猜想

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限