2015-05-25
收藏
高考数学解题思想一:函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。
高考数学解题思想二:数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
高考数学解题思想三:特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
高考数学解题思想四:极限思想解题步骤
极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
高考数学解题思想五:分类讨论
常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
人教版三年级上册数学2万以内的加法和减法(一)第2课时两位数减法的口算同步精练答案
人教版三年级上册数学第一单元测试与评价同步精练答案
人教版六年级上册数学第八单元测试与评价同步精练答案
人教版六年级上册数学第六单元测试与评价同步精练答案
人教版六年级上册数学第七单元测试与评价同步精练答案
人教版三年级上册数学期中测试与评价同步精练答案
人教版三年级上册数学4万以内的加法和减法(二)整理和复习同步精练答案
人教版三年级上册数学4加法第1课时加法(一)同步精练答案
人教版三年级上册数学6多位数乘一位数口算乘法同步精练答案
人教版三年级上册数学4减法第2课时减法(二)同步精练答案
人教版六年级上册数学期末测试与评价同步精练答案
人教版六年级上册数学总复习第1课时分数乘、除法同步精练答案
人教版三年级上册数学6笔算乘法第3课时多位数乘一位数(连续进位)(一)同步精练答案
人教版三年级上册数学5倍的认识第2课时倍的认识(二)同步精练答案
人教版三年级上册数学6笔算乘法第7课时一个因数末尾有0的乘法同步精练答案
人教版三年级上册数学6笔算乘法第6课时一个因数中间有0的乘法同步精练答案
人教版六年级上册数学扇形统计图同步精练答案
人教版三年级上册数学1时、分、秒第2课时时间的计算(二)同步精练答案
人教版三年级上册数学3测量第6课时吨的认识(二)同步精练答案
人教版六年级上册数学数学广角——数与形同步精练答案
人教版三年级上册数学4加法第2课时加法(二)同步精练答案
人教版三年级上册数学6笔算乘法第4课时多位数乘一位数(连续进位)(二)同步精练答案
人教版三年级上册数学1时、分、秒第2课时时间的计算(一)同步精练答案
人教版三年级上册数学3测量第3课时千米的认识(一)同步精练答案
人教版三年级上册数学第四单元测试与评价同步精练答案
人教版三年级上册数学6笔算乘法第2课时多位数乘一位数(不连续进位)同步精练答案
人教版六年级上册数学总复习第2课时百分数同步精练答案
人教版三年级上册数学4减法第4课时减法(四)同步精练答案
人教版三年级上册数学3测量第4课时千米的认识(二)同步精练答案
人教版三年级上册数学6笔算乘法第9课时乘法的估算同步精练答案
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |