2009-04-16
收藏
不言自明 梅森数
1903年,在美国纽约的一个学术报告会上,数学家科尔表演了一个小插曲:他走上讲台,拿起粉笔,一言不发,在黑板上做长长的计算。
算呀算呀,算出一个结果:
267-1=147 573 952 589 676 412 927。
然后又算呀算呀,又算出一个结果:
193 707 721×761 838 257 287
=147 573 952 589 676 412 927。
两次计算的结果完全相同,听众席上掌声雷动。
台上的人不作任何解释,台下的人不提任何问题,却能完全互相了解,共享成功的喜悦。他们是打的什么哑谜?究竟是怎么一回事呢?
原来,科尔是在报告他自己关于质数研究的一个好结果。他的计算表明,267-1不是质数,因为它可以分解成两个大于1的自然数的乘积。
不是质数的自然数太多太多,大部分自然数都是合数。为什么证明了267-1不是质数就要鼓掌呢?
这是因为267-1属于一类著名的数,叫做“梅森数”。梅森(Mersenne,1588~1648年)是法国数学家,他研究过形如2p-1的数,其中p是质数,后来人们称这类数为梅森数。梅森证明了,当p=2,3,5,7,13,17,19,31时,对应的8个梅森数都是质数。由此猜想,在梅森数中出现质数的机会可能比较多。人们要寻找更大的新质数,往往就到梅森数里去淘金。在1903年科尔报告之前,当时的数学家们还指望267-1可能被确定是一个大的质数。科尔通过板演,告诉他的同行们,267-1不是质数,是一个有21位的合数,不必再为它耗费时间做大量计算了。科尔还具体求出这个大合数的两个质因数,其中一个是9位数,另一个是12位数。当时还没有电子计算器,更没有电子计算机,要靠手算得出这样的结果,非常不容易。这一进展当然会赢来热烈鼓掌。
科尔为了得到他所报告的结果,用去了三年中所有星期天的时间。
现在电了计算机已经普及,计算起来就方便得多了。在一台486微机上,利用数学软件,计算267-1只需要不到1秒钟的时间;再把所得的21位数分解成质因数的乘积,也不过花费35秒左右。
利用电子计算机可以方便地判断一个不太大的整数是质数还是合数。
现在寻找人们暂时还不知道的更大的新质数,也都利用电子计算机,不过因为计算量太大太大,需要设计一套特殊方法。
如果一个梅森数是质数,就叫做梅森质数。通常打破大质数纪录的都是梅森数。
1985年发现的大质数是第30个梅森质数,有65050位数字。这个纪录在7年后被刷新,1992年发现了第31个梅森质数,有227832位数字。
1994年发现了第32个梅森质数,有258716位数字。
1996年发现了第33个梅森质数,有378632位数字,它是21257787-1。
梅森数除去对寻找大质数有特殊贡献而外,在编码中也有实际应用。
认识钟表新人教版
十进制计数法新人教版
整数、小数四则混合运算[上学期]新人教版
面积和周长的对比[上学期]新人教版
除法各部分间的关系新人教版
加法的意义和运算定律
平行四边形和梯形[下学期]新人教版
平面图形的面积[下学期]新人教版
平行四边形的面积计算[下学期]浙教版
角的度量新人教版
第八册第六单元垂直和平行北师大版
梯形的认识[下学期]北京师范大学出版社
商不变性质
几分之一北师大版
小数的大小的比较[下学期]新人教版
垂直
列含有未知数x的等式解答“比多”、“比少”的应用题[下学期]新人教版
小学数学第八册北师大版
发展的归一和归总应用题新人教版
分数的认识[下学期]新人教版
小数的性质[下学期]新人教版
小数和复名数[下学期]新人教版
求平均数北师大版
乘法的意义和运算定律[下学期]
乘法的估算[上学期]新人教版
生活中的数学[上学期]新人教版
小数意义的产生[下学期]九年义务教育
面积与面积单位[上学期]浙教版
复合应用题[下学期]新人教版
加法的意义和运算定律新人教版
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |