《立方根》数学教学设计_教学设计 - 查字典数学网
数学《立方根》数学教学设计
首页>数学教研>教学设计>《立方根》数学教学设计

《立方根》数学教学设计

2014-06-11 收藏

《立方根》在教学方法上主要应用了创设情境--提出问题--建立模型--解决问题的思路,在实际教学中主要采用了精讲精练,学生自主学的教学方式。为了更好的将教与学有机结合,提高课堂教学效率,数学网小编与大家分享《立方根》数学教学设计,希望大家在学习中得到提高。

一、教学目标:

1、通过实例经历立方根概念的产生过程。

2、了解立方根的概念,会用根号表示。

3、了解开立方与立方互为逆运算,会用立方运算求立方根。

二、教学的重点和难点:

重点:;立方根的概念和开立方运算。

难点:例2第(2)题涉及两种开方运算的混合运算,基础较差的学生容易混淆,是本节课的难点。

三、教学过程:

㈠创设情境、引入新知

我以学生们比较熟悉的魔方引入。

提出问题:

① 平常的生活中,同学们有玩过魔方吗?

② 一个三阶魔方第一层有多少个立方体?

③ 它一共由多少个小立方体组成的?

④ 由8个小立方体组成的是几阶魔方你知道吗?64个小立方体?

引出立方根的定义。

㈡启发诱导、探究新知

1、立方根的定义:一般地,一个数的立方等于a,这个数就叫做a的立方根,也叫做a的三次方根,

2、立方根的表示方法:3

a

根指数

根号

被开方数

3、读做:三次根号

㈢勤于实践、应用新知

1、例1:求下列各数的立方根:

(1)125 (2) -27 (3) (4)- 0.064  (5) 0

师给出(1)(2)两小题的解法步骤,(3)(4)(5)小题由学生板演之后:

观察并思考:一个数的立方根的个数有几个?

一个数的立方根的符号与这个数的符号存在什么关系?

得出事实:一个正数有一个正的立方根,一个负数有一个负的立方根,零的立方根是零。

2、开立方的定义:求一个数的立方根的运算,叫做开立方

3、

4、探究平方根与立方根的异同点

正数零负数

1 0 -1

平方根

立方根

仔细看一看,大胆说一说:

不同点: ①正数和负数的平方根与立方根的个数不同

②表示平方根和立方根的符号不同

相同点:  ①0的平方根、立方根都是0

②求平方根、立方根的过程都是一种逆运算。

4、明辨是非

1.判断下列说法是否正确,并说明理由:

(1) 的立方根是

(2)算术平方根和立方根都等于本身的数只有0

(3)-8的立方根是-2,但-8没有平方根

(4) 4的平方根是±2,但4没有立方根

(5)互为相反数的两个数的立方根也互为相反数

注意:①举例时要注意特殊数:1,0,-1

②举例的数要有代表性

㈣提炼升华、巩固新知

1、帮忙纠错:

②由216个小立方体能组成几阶魔方呢?

③把一个长、宽、高分别为50cm,2cm,8cm的长方体铁块溶化后锻造成一个立方体铁块,问造成的立方体的棱长是多少cm?(损耗忽略不计)

㈤课堂小结、完善新知

我们可以提出哪些问题?

(1)它表示什么意思?

(2)计算的结果是多少?

……

㈥布置作业:

(1)课堂作业本3.3

(2)课本剩余作业题

(3)提高题

以上就是数学网小编分享《立方根》数学教学设计的全部内容,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限