2016-10-26
收藏
2016中考将至,考前复习冲刺也进行到水深火热的地步,为此学习方法网为大家整理了中考数学考点解析相关内容,希望对大家有所帮助!
1.不在同一直线上的三点确定一个圆。
2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12.①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离dr
13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理圆的切线垂直于经过切点的半径
15.推论1经过圆心且垂直于切线的直线必经过切点
16.推论2经过切点且垂直于切线的直线必经过圆心
17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离dR+r②两圆外切d=R+r
③.两圆相交R-rr)
④.两圆内切d=R-r(Rr)⑤两圆内含dr)
21.定理相交两圆的连心线垂直平分两圆的公共弦
22.定理把圆分成n(n3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于(n-2)180/n
25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长=d-(R-r)外公切线长=d-(R+r)
32.定理一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径
35.弧长公式l=a*r a是圆心角的弧度数r0扇形面积公式s=1/2*l*r
以上就是学习方法网为同学们整理的中考数学考点解析相关内容,预祝同学们金榜题名!
狼狐为奸:围剿兔子村
小升初数学试卷及答案2014
小升初数学应用题解析
2014年六年级毕业考试卷练习
小升初数学重点难点解析
2014小学毕业考试卷训练
2014六年级数学下册期末试卷(带答案)
小升初数学计算专题复习题
2013年六年级毕业考试卷解析
小升初数学模拟练习2014
森林数学故事:恩将仇报的瘸腿狐狸
2014小升初模拟试卷数学
小考试卷2014数学
小考试卷2014
小学升学考试试卷2014
2014小学毕业考试卷练习
2014小升初数学试卷解析
森林数学故事:狼狐同归于尽
小升初数学试卷及答案解析
小学升学考试试卷数学2014
小升初试题数学解析
2014广州小升初数学模拟试卷
2014数学小考试卷
奥数专项训练应用题:流水行程的问题
2014年小学毕业试卷数学
小升初数学经济问题复习题
奥数专项训练应用题:平均数的问题
小升初数学丢分题解析
2014小升初数学模拟试题
2014小学毕业考试卷分析
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |