2016-10-26
收藏
(1)有一堆硬币,共十二枚。
(2)双方轮流从中取走两枚或三枚硬币。
(3)谁取最后一枚硬币谁输。
Ⅰ.阿曼德和比福德在玩这种游戏,阿曼德开局,比福德随后。
Ⅱ.双方总是尽可能采取能使自己获胜的步骤;如果无法取胜,就尽可能采取能导致和局的步骤。
这两人中是否必定会有一人赢?如果这样,谁会赢?
(提示:首先判定当只有一枚硬币要你取的时候,你是处于稳操胜券的地位,还是处于注定要输,或者导致和局的地位;然后,判定当只有两枚硬币要你取的时候,你是处于稳操胜券的地位,还是处于注定要输,或者导致和局的地位;如此进行,直至判定有十二枚硬币要你取的情况。)
答 案
根据{Ⅱ.双方总是尽可能采取能使自己获胜的步骤;如果无法取胜,就尽可能采取能导致和局的步骤。},如果有一方能够取胜,那他一定要取胜。如果一方能够逼和(假定他不能取胜),那他一定要逼和。
根据(2)和(3):
(a)当这堆硬币中只有一枚硬币要取的时候、显然游戏只能以和局告终,因为谁也不能取。
(b)当这堆硬币中有两枚硬币要取的时候,取者必输。这是因为他必须取走这两枚硬币。
(c)当这堆硬币中有三枚硬币要取的时候,取者只能采取逼和的策略。这是因为如果他一下子把三枚硬币全都取走,那他就输了;于是他只取走两枚硬币,这样对方就不能取了。
(d)当这堆硬币中有四枚硬币要取的时候,取者可以取走两枚硬币从而获胜,因为这样就使对方陷入了只有两枚硬币要取的必败境地。如果他取走三枚硬币游戏就以和局告终。
(e)当这堆硬币中有五枚硬币要取的时候,如果取者能够留下一定枚数的硬币从而使对方陷于必败的境地,那他就赢了。因此,他取走了三枚硬币,使对方陷入了只有两枚硬币要取的必败境地。
(f)当这堆硬币中有六枚硬币要取的时候,取者只能采取逼和的策略。他可以取走三枚硬币,这就造成了有三枚硬币要取的必和局面。如果他只取走两枚硬币,就把有四枚硬币要取的必胜机会留给了对方。
按照这样的推理,我们可以发现,当这堆硬币中有两枚、七枚或十二枚硬币要取的时候,取者注定要输;当这堆硬币中有四枚、五枚、九枚或十枚硬币要取的时候,取者稳操胜券;这堆硬币中有一枚、三枚、六枚、八枚或十一枚硬币要取的时候,游戏必以和局告终。
下列三表总结了这三类情况分别是怎样注定导致失败、怎样稳步走向胜利和怎样以和局告终的。
注定要输的局面 | 如果一方取走 | 他留给对方的必胜机会 |
2 | 2 | 0 |
7 | ![]() | ![]() |
12 | ![]() | ![]() |
稳操胜券的局面 | 如果一方取走 | 他使对方陷入的必败境地 |
4 | 2 | 2 |
5 | 3 | 2 |
9 | 2 | 7 |
10 | 3 | 7 |
只能逼和的局面 | 如果一方取走 | 他造成的必和局面 |
1 | - | 1 |
3 | 2 | 1 |
6 | 3 | 3 |
8 | 2 | 6 |
11 | 3 | 8 |
根据{(1)有一堆硬币,共十二枚。},开始时有十二枚硬币。由于十二枚硬币是注定要输的局面,谁开局谁必输。根据{Ⅰ.阿曼德和比福德在玩这种游戏,阿曼德开局,比福德随后。},是阿曼德开局,故阿曼德必输。因此比福德必赢。
小升初数学体积单位换算公式
小升初必考数学概念:真分数
数学倍数与约数的相关知识
数学基础知识:正比例
小升初数学时间单位换算公式
小升初数学精讲:利润与折扣
小学数学公式:数学面积计算公式
经典奥数题及答案49
小升初数学体积和表面积知识点
数学算术规律的知识点
小升初数学精讲:工程问题
数学知识点:分数与百分数的应用
小学数学公式:定义定理
小升初数学算术知识点
经典奥数题及答案48
数学数量关系计算公式的知识点
数学反比例的定义及考点
小升初数学约分和通分的知识点
经典奥数题及答案47
数学约分和通分的知识点
经典奥数题及答案45
小升初数学百分数的知识点讲解
小升初数学人民币单位换算公式
数学数量关系计算公式知识点
数学整数四则运算
小升初数学重量单位换算公式概括
数学方程式的概念及等式的性质
数学中关于比的知识点
数学小数四则运算
小升初数学面积单位换算公式总结
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |