2016-10-26
收藏
学习方法网小编为大家整理了史上最全高中数学常用诱导公式,供大家学
常用的诱导公式有以下几组
公式一:
设为任意角,终边相同的角的同一三角函数的值相等:
sin(2k+)=sin(kZ)
cos(2k+)=cos(kZ)
tan(2k+)=tan(kZ)
cot(2k+)=cot(kZ)
公式二:
设为任意角,的三角函数值与的三角函数值之间的关系:
sin(+)=-sin
cos(+)=-cos
tan(+)=tan
cot(+)=cot
公式三:
任意角与-的三角函数值之间的关系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四:
利用公式二和公式三可以得到与的三角函数值之间的关系:
sin(-)=sin
cos(-)=-cos
tan(-)=-tan
cot(-)=-cot
公式五:
利用公式一和公式三可以得到2与的三角函数值之间的关系:
sin(2-)=-sin
cos(2-)=cos
tan(2-)=-tan
cot(2-)=-cot
公式六:
/2及3/2与的三角函数值之间的关系:
sin(/2+)=cos
cos(/2+)=-sin
tan(/2+)=-cot
cot(/2+)=-tan
sin(/2-)=cos
cos(/2-)=sin
tan(/2-)=cot
cot(/2-)=tan
sin(3/2+)=-cos
cos(3/2+)=sin
tan(3/2+)=-cot
cot(3/2+)=-tan
sin(3/2-)=-cos
cos(3/2-)=-sin
tan(3/2-)=cot
cot(3/2-)=tan
(以上kZ)
注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于/2*k(kZ)的三角函数值,
①当k是偶数时,得到的同名函数值,即函数名不改变;
②当k是奇数时,得到相应的余函数值,即sincostancot,cottan.
(奇变偶不变)
然后在前面加上把看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2-)=sin(4/2-),k=4为偶数,所以取sin。
当是锐角时,2-(270,360),sin(2-)<0,符号为“-”。
所以sin(2-)=-sin
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把视为锐角时,角k360+(kZ),-、180,360-
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部是“-”;
第三象限内切函数是“+”,弦函数是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.
上述记忆口诀,一全正,二正弦,三内切,四余弦
还有一种按照函数类型分象限定正负:
函数类型第一象限第二象限第三象限第四象限
正弦……+……+………………
余弦……+………………+……
正切……+…………+…………
余切……+…………+…………
同角三角函数基本关系
同角三角函数的基本关系式
倒数关系:
tancot=1
sincsc=1
cossec=1
商的关系:
sin/cos=tan=sec/csc
cos/sin=cot=csc/sec
平方关系:
sin^2()+cos^2()=1
1+tan^2()=sec^2()
1+cot^2()=csc^2()
同角三角函数关系
六角形记忆法:
构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式
两角和与差的三角函数公式
sin(+)=sincos+cossin
sin(-)=sincos-cossin
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
tan(+)=(tan+tan)/(1-tantan)
tan(-)=(tan-tan)/(1+tantan)
二倍角公式
二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2=2sincos
cos2=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()
tan2=2tan/[1-tan^2()]
半角公式
半角的正弦、余弦和正切公式(降幂扩角公式)
sin^2(/2)=(1-cos)/2
cos^2(/2)=(1+cos)/2
tan^2(/2)=(1-cos)/(1+cos)
另也有tan(/2)=(1-cos)/sin=sin/(1+cos)
参加“课堂大练兵”心得体会——《用字母表示数》课后反思
五年级数学下册《解决问题的策略》第一课时说课稿
初三下册数学知识点:几何问题的处理方法知识点
怎样提高高考数学的答题速度
中考数学冲刺方法:初三数学如何考高分?
高考数学冲刺复习的注意个要点
初三数学上册知识点梳理:实数知识点
五年级数学上册《在封闭曲线上植树问题》说课稿
九年级下册数学知识点:反证法知识点
初三年级下册数学第4章知识点汇总(浙教版)
初三下册数学知识点:简单物体的三视图知识点
小学数学教研活动反思 由教研《比例的意义》引出的思考
五年级上册《长方形和正方形的周长》说课稿
初三数学复习知识点:圆的知识点
听一年级数学下册《解决问题》有感
小学数学老师培训随感 数学狂欢
2017年高考数学复习冲刺的提醒
中考数学备考:二次函数压轴题赏析
2017年中考数学复习的误区
高考数学取得140分的做题技巧
观希望杯三年级数学课有感
初三数学:一元二次方程知识点归纳
中考数学复习攻略:做好三轮复习和考前调整
中考数学复习:辅助线助记忆口诀
小学数学老师教研论文 让数学试卷评析课“亮起来”
初三数学:实际问题与一元二次方程知识点
2017年高考数学复习:题型特点和答题技巧
四年级数学《直线、射线和角》导学案
名师指点:中考数学复习方法
听四年级《射线、直线和角》反思
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |