2016-10-25
收藏
一、分数除法
1、分数除法的意义:
乘法: 因数 因数 = 积 除法: 积 一个因数 = 另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
规律(分数除法比较大小时):
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。
叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。
二、分数除法解决问题
(未知单位1的量(用除法): 已知单位1的几分之几是多少,求单位1的量。 )
1、数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是的: 单位1的量分率=分率对应量
(2)分率前是多或少的意思: 单位1的量(1分率)=分率对应量
2、解法:(建议:最好用方程解答)
(1)方程: 根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法): 分率对应量对应分率 = 单位1的量
3、求一个数是另一个数的几分之几:就 一个数另一个数
4、求一个数比另一个数多(少)几分之几: 两个数的相差量单位1的量 或:
① 求多几分之几:大数小数 1
② 求少几分之几: 1 小数大数
三、比和比的应用
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 1510=3/2(比值通常用分数表示,也可以用小数或整数表示)
∶ ∶ ∶ ∶
前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、 比和除法、分数的联系:
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
(2)用求比值的方法。注意: 最后结果要写成比的形式。
如: 15∶10 = 1510 = 3/2 = 3∶2
5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
如: 已知两个量之比为,则设这两个量分别为。
路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)
工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)
2004北京高考数学(理)
2004年全国各地高考数学试题20套
2004全国高考数学(理)(一)
福建省漳州市2016年中考数学试题
2004全国高考数学(理)(四)
2004江西高考数学(理)
2004福建高考数学(理)
辽宁省丹东市2016年中考数学试题
贵州省六盘水市2016年中考数学试题
福建省莆田市2016年中考数学试题
北京2004高考试卷
2004全国高考数学(文)(二)
高考数学选择题专项训练(十)
2004福建高考数学(文)
2004上海高考数学(文)
2004上海高考数学(理)
高考数学选择题专项训练(三)
2004天津高考数学(理)
2004重庆高考数学(文)
2004广西高考数学(理)
2017届中考数学第一轮复习检测1
2004全国高考数学(文)(四)
2006年杭州市第一次高考科目教学质量检测数学参考评分标准(理科
高考数学选择题专项训练(六)
贵州省毕节市2016年中考数学试题
2004全国高考数学(文)(一)
辽宁省葫芦岛市2016年中考数学试题
2004广东高考数学(理)
2004浙江高考数学(理)
2004浙江高考数学(文)
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |