2016-10-25
收藏
1、小明要登上10级台阶,他每一步只能登1级或2级台阶,他登上10级台阶共有多少种不同的登法?
分析与解:登上第1级台阶只有1种登法。登上第2级台阶可由第1级台阶上去,或者从平地跨2级上去,故有2种登法。登上第3级台阶可从第1级台阶跨2级上去,或者从第2级台阶上去,所以登上第3级台阶的方法数是登上第1级台阶的方法数与登上第2级台阶的方法数之和,共有1+2=3(种)……一般地,登上第n级台阶,或者从第(n—1)级台阶跨一级上去,或者从第(n—2)级台阶跨两级上去。根据加法原理,如果登上第(n—1)级和第(n—2)级分别有a种和b种方法,则登上第n级有(a+b)种方法。因此只要知道登上第1级和第2级台阶各有几种方法,就可以依次推算出登上以后各级的方法数。由登上第1级有1种方法,登上第2级有2种方法,可得出下面一串数:
1,2,3,5,8,13,21,34,55,89。
其中从第三个数起,每个数都是它前面两个数之和。登上第10级台阶的方法数对应这串数的第10个,即89。也可以在图上直接写出计算得出的登上各级台阶的方法数
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |