2016-10-25
收藏
北京清华附中数学特级教师尹粉玉
函数是每年高考的热点,而抽象函数性质的运用又是函数的难点之一。抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则。此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识。因此备受命题者的青睐,在近几年的高考试题中不断地出现。然而,由于这类问题本身的抽象性和其性质的隐蔽性,大多数学生在解决这类问题时,感到束手无策。下面通过例题来探讨这类问题的求解策略。
例:设y=蕊(x)是定义在区间[-1,1]上的函数,且满足条件:
(i)f(-1)=f(1)=0;
(ii)对任意的u,v∈[-1,1],都有—f(u)-f(v)—≤—u-v—。
(Ⅰ)证明:对任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)证明:对任意的u,v∈[-1,1],都有—f(u)-f(v)—≤1。
解题:
(Ⅰ)证明:由题设条件可知,当x∈[-1,1]时,有f(x)=f(x)-f(1)≤—x-1—=1-x,即x-1≤f(x)≤1-x.
(Ⅱ)证明:对任意的u,v∈[-1,1],当—u-v—≤1时,有—f(u)-f(v)—≤1
当—u-v—1,u·v0,不妨设u0,则v0且v-u1,其中v∈(0,1],u∈[-1,0)
要想使已知条件起到作用,须在[-1,0)上取一点,使之与u配合以利用已知条件,结合f(-1)=f(1)=0知,这个点可选-1。同理,须在(0,1]上取点1,使之与v配合以利用已知条件。所以,—f(u)-f(v)—≤—f(u)-f(-1)—+—f(v)-f(1)—≤—u+1—+—v-1—=1+u+1-v=2-(v-u)1
综上可知,对任意的u,v∈[-1,1]都有—f(u)-f(v)—≤1.
点评:有关抽象函数问题中往往会给出函数所满足的等式或不等式,因此在解决有关问题时,首先应对所要证明或求解的式子作结构上的变化,使所要证明或求解的问题的结构与已知的相同。如本题未给出函数y=f(x)的解析表达式,而给出了一组特定的对应关系f(-1)=f(1)=0,以及两个变量之差的绝对值不小于对应的函数值之差的绝对值的一般关系。在(1)的证明中,利用f(1)=0,把f(x)改写成—f(x)—=—f(x)-f(1)—;在(2)的证明中,利用f(-1)=f(1)=0,把—f(u)-f(v)—改写成—f(u)-f(v)—≤—f(u)-f(-1)—+—f(v)-f(1)—,这些变形起了重要的作用,因为是这些变化创造了使用条件的机会,也创造了解决问题的捷径。
另外,有关抽象函数问题中所给的函数性质往往是对定义域内的一切实数都成立的,因此根据题意,将一般问题特殊化,选取适当的特值(如令x=1,y=0等),这是解决有关抽象函数问题的非常重要的策略之一。
总之,抽象函数问题求解,用常规方法一般很难奏效,但我们如果能通过对题目的信息分析与研究,采用特殊的方法和手段求解,往往会收到事半功倍之功效,同时在运用这些策略时要做到密切配合,相得益彰。(来源:人民网-环球时报)
相交线中的角教案
用等式性质解方程教案1
生活中的立体图形教案
2015-2016学年七年级数学下册课时训练题30
简单的三角恒等变换课件1
全等三角形的判定教案2
用等式性质解方程教案2
立体图形的表面展开图教案
2015-2016学年七年级数学下册课时训练题31
2015-2016学年七年级数学下册课时训练题35
全等三角形教案4
角的比较和运算教案
相似三角形教案2
简单的三角恒等变换课件2
随机抽样与用样本估计总体课件
简单的三角恒等变换课件4
平面向量课件3
平面向量课件1
直角三角形的性质教案
解一元一次方程教案7
平行四边形教案4
相似三角形教案1
三角函数课件4
小数和整数相乘教案
约数和倍数教案
平面向量课件5
统计图的选择教案
角的特殊关系教案
全等三角形教案1
平面向量课件2
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |