2016-10-25
收藏
天津市第四十二中学 李艳杰
二、运用两非零向量共线的充要条件求轨迹方程。
例1:已知定点A(2,0),点P在曲线x2+y2=1(x≠1)上运动,∠AOP的平分线交PA于Q,其中O为原点,求点Q的轨迹方程。
解: 设Q(x,y),P(x1,y1)
-=(x-2,y)
-=( x1-x,y1-y)
又∵-=-=-
∴ -=2-
即:(x-2,y)=2(x1-x,y1-y)
-
解得:-
代入x12+y12=1(x≠1)有:
-(3x-2)2+-y2=1(x≠-)
即所求轨迹方程为:
(x--)2+y2=-(x≠-)
【点拨】用该方法解此类问题简单明了,若将Q视为线段AP的定比分点,运用定比分点公式解本题,则计算过程既繁琐又容易出错。
例2:设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A、B两点,点Q与点P关于y轴对称,O为坐标原点,若-=2-,且-■=1,求P点的轨迹方程。
解:-=2-
∴P分有向线段-所成的比为2
由P(x,y)可得B(0,3y),A(-x,0)
∴- =(--x,3y)
∵Q与P关于y轴对称, ∴Q(-x,y),-且 =(-x,y)
∴由-■=1可得-x2+3y2=1(x0,y0)
即所求点P的轨迹方程为-x2+3y2=1(x0,y0)
【点拨】求动点轨迹方程时应注意它的完备性与纯粹性。化简过程破坏了方程的同解性,要注意补上遗漏的点或者挖去多余的点。
三、运用两非零向量垂直的充要条件是求轨迹方程。
例1:如图,过定点A(a,b)任意作相互垂直的直线l1与l2,且l1与x轴相交于M点,l2与y轴相交于N点,求线段MN中点P的轨迹方程。
解:设P(x,y),则M(2x,0),N(0,2y)
-=(2x-a ,-b)
-=(-a,2y-b)
由-⊥-知-■=0
∴(2x-a)(-a)+(-b)(2y-b)=0
即所求点P的轨迹方程为2ax+2by=a2+b2
【点拨】用勾股定理解本题,运算繁琐,若用斜率解本题,又必须分类讨论,用向量的方法避免了上述两种方法的缺陷,使解题优化。
例2:过抛物线y2=8x的焦点F的直线交抛物线于A,B两点,过原点O作OM⊥AB,垂足M,求点M的轨迹方程。
解:设M(x,y), OM⊥AB,F(2,0)
∵-■=0且-=(x,y),-=(2-x,-y)
∴x(2-x)-y2=0,即:x2+y2-2x=0
∴点M的轨迹方程为x2+y2-2x=0
由以上几例可以看出:轨迹方程的很多题目都可以用向量来探求思路。用向量解决求轨迹问题,最理想的情形是题设中有“向量的数量积”“平行”“垂直”,或结论与“垂直”有关。重要的是在学习和应用的过程中培养向量意识,使向量成为我们处理问题的基本工具。
有理数的加法教学设计 人教版数学四
有理数乘方导学案
列一元一次方程解应用题习题课学案 人教版数学
平行线的性质
命题
2015初一年级数学知识:平行线的性质
初一年级数学知识点:角的度量
2015年七年级数学知识:平行四边形
七年级上册数学期中复习资料:第一单元
有理数的除法导学案
人教版数学 正数和负数教案(第1课时)
2015初一年级数学知识点:相关的角
近似数和有效数字导学案 人教版数学
2015七年级数学测试题:多边形
2015-2016年初一上册数学期中第一单元复习知识点参考
科学记数法导学案 人教版数学
七年级数学知识点总结(下册)
有理数的减法教学设计 人教版数学
苏教版初中七年级数学复习知识点
正数和负数教案(第2课时) 人教版数学
有关于七年级下册的数学知识点(平面直角坐标系)
正数和负数导学案 人教版数学
初中一年级下数学知识点(实数)
数轴导学案 人教版数学
命题 教学设计方案
有理数乘方导学案(第二课时 有理数的混合运算) 人教版数学
数轴教案 人教版数学
定理与证明的教案
2015初一数学期中考试复习热点:第一章
有理数导学案 人教版数学
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |