2016-10-25
收藏
天津市第四十二中学 张鼎言
(一)基础题
复习导引:数列是定义在正整数集或正整数子集上的函数,函数的图象是平面直角坐标系上的点集。项an是n的函数,同数Sn也是n的函数,af(n)是复合函数,如下面的第2、3题。等差、等比中项始终是高考(Q吧)拟题的知识点,如下面的第1、5题。在数列问题中,从一般到特殊的思想方法,是重要的思路,如第3、5题。
1.若an是等差数列,首项a10,a2003+a20040,a2003·a20040,则使前n项和Sn0成立的最大自然n是( )
A、4005 B、4006
C、4007 D、4008
解:∵a2003·a20040
∴a2003与a2004中必有一个为负。
又a10只有d0,a2003、a2004中才可能有负值,∴a20040
a2003+a2004=2a1+4005d=a1+a1+4005d=a1+a40060
∴S4006=-(a1+a4006)0
S4007=-(a1+a4007)
=-·2a20040
∴选B
注:本题不同于当Sn最大时求n的值,在审题中注意区别。
2.已知两个等差数列an和bn的前n项和分别为An和Bn,且-=-,则使得-为整数的正整数n的个数是( )
A.2 B.3 C.4 D.5
解:∵an,bn为等差数列
∴可设An=(7n+45)gn,
Bn=(n+3)gn
an=An-An-1=14n+38,
bn=Bn-Bn-1=2n+2,(n2)
-=-=k,k为正整数
n=-,n为正整数,719
K=8、9、10、11、13
∴选D
注:若{an}为等差数列,那么Sn=pn2+qn,是常数项为0,关于n的二次函数。
3.已知数列{an}、{bn}都是公差为1的等差数列,其首项分别为a1、b1,且a1+b1=5,a1,b1∈N*。设cn=-(n∈N*),则数列{cn}的前10项和等于()
A.55 B.70
C.85 D.100
解:某些数列问题经常用一般到特殊的思考方法。
c1=-=a1+(b1-1)·1
c2=-=a1+(b2-1)·1
c3=-=a1+(b3-1)·1
c2-c1=b2-b1=1,
c3-c2=b3-b2=1
c1=a1+b1-1=4
∴{cn}为c1=4,公差为1的等差数列
∴S10=85 选C
注:-其中bn是项数,在数列中,项an是项数n的函数。
4. 各项均为正数的等比数列{an}的前n项和为Sn,若Sn=2,S3n=14,则S4n等于
(A)80(B)30
(C)26 (D)16
解:Sn=a1+a2+…+an=2
S2n=Sn+an+1+an+2+…+a2n
=Sn+qn(a1+a2+…+an)
=Sn+Sngqn=2+2qn
S3n=S2n+a2n+1+a2n+2+…+a3n
=S2n+q2ngSn=2+2qn+2q2n=14
→qn=2
S4n=S3n+(a3n+1+a3n+2+…+a4n)
=S3n+q3ngS1=30
选B
注:这里把Sn作为一个单位,以此表示S2n,S3n,S4n,这是一个“整体”的思想方法。
5.在等差数列{an}中,若a10=0则有等式a1+a2+…+an=a1+a2+…+a19-n(n19,n∈N)成立.类比上述性质,相应地,在等比数列{bn}中,若b9=1则有等式____成立。
分析:用一般到特殊的思考方法。a1+a2+…+an=a1+a2+…+a19-n不好理解,不妨假定,n=18,这时上面的等式变为:a2+a3+…+a17+a18=0,a2+a18=a3+a17=…=a9+a11=2a10=0,可以看出题目条件中给出的等式是等差中项的变形,这是问题的实质。
若给出a9=0,可以引出:
a1+a17=a2+a16=a3+a15=…=a8+a10=2a9=0
那么应有下面的等式:
a1+a2+…+an=a1+a2+…+a17-n
类比等比数列:
b9=1,b1·b17=b2·b16=…=b8·b10=b92=1。
∴b1·b2……bn=b1·b2……b17-n(n17,n∈N)
注:灵活运用等差、等比中项是数列问题中的重要内容,下面的结论有助于这种灵活应用。若p、q、m、n均为正整数,且p+q=m+n,在等差数列中有ap+aq=am+an;在等比数列中,ap·aq=am·an
6. 数列{an}中,a1=-,an+an+1=-,n∈N*则-(a1+a2+…+an)等于( )
A.- B.-
C.- D.-
分析:若把an+an+1看成一项,那么 {an+an+1}为等比数列。
(a1+a2)+(a2+a3)+(a3+a4)+…
=2(a1+a2+a3+a4+…)-a1
∵a1+a2=-,
-=-
∴2(a1+a2+a3+…)-a1
=-=-
-=(a1+a2+…+an)=-
选C。
注:在数列求和问题中,有时可以把几项并成一项,也有时把一项分拆成几项,这是求和中“变形”的一条重要思路.
7.已知{an}是等差数列,{bn}是公比为q的等比数列,a1=b1,a2=b2≠a1,记Sn为数列{bn}的前n项和,(1)若 bk=am(m,k是大于2的正整数),求证:Sk-1=(m-1)a1;
(2)若b3=ai(i是某一正整数),求证:q是整数,且数列{bn}中每一项都是数列{an}中的项;
(3)是否存在这样的正数q,使等比数列{bn}中有三项成等差数列?若存在,写出一个q的值,并加以说明;若不存在,请说明理由;
解:(1)∵a1=b1,a2=b2≠a1→b2≠b1→q≠1
∴Sk-1=-=-
=-=-=(m-1)a1
解:(2)b3=b1q2=a1q2=a1+(i-1)gd=a1+(i-1)(a2-a1)
=a1+(i-1)(b2-b1)=a1+(i-1)(a1q-a1)
∵a1≠0,q≠1
∴q2=1+(i-1)(q-1)
q=i-2,q是整数,
由b1=a1,b2=a2,b3=ai→q=i-2
下面只讨论n4的情况
bn=b1qn-1=a1+(k-1)d=a1+(k-1)(a2-a1)=a1+(k-1)ga1g(q-1)
化简qn-1=1+(k-1)(q-1)
k=1+-1+1+q+q2+…qn-2
若i=1,q=-1,q+q2+…qn-2=0或-1
k=2,1;
i=2,q=0。矛盾
i3,k是正整数。
分析(3)b1=a1,b2=a2,a3=b(n)为所求
由a1、a2、a3成等差
b1、b2、b(n)也成等差
a3=a1+2d=b1+2(a2-a1)
=b1+2(b1q-b1)
=b1(2q-1)=b1qn-1
n3,n=3时,2q-1=q2→q=1与已知矛盾。
n=4 2q-1=q3 q3-q=q-1
q(q2-1)=q-1
q-1≠0,q2+q-1=0,又q0
∴q=-
即b1,b2,b4成等差。
注:2q-1=qn其中n,q都是未知数,因为n为正整数,所以从分析n入手。
[责任编辑:moninfu]
中考数学考前必做专题试题三角形的边
西师大版四年级下册数学小数的意义课后练习题
沪教版五年级下册数学体积与重量随堂检测题
四年级数学小数的近似数随堂检测题第二学期
新人教版六年级数学下册总复习考试试卷
人教版二年级数学近似数同步检测题第二学期
小学五年级下册数学行程课后训练题
浅谈学生作业的上交与批改
小学三年级下册数学乘与除课后检测题
2016年二年级下册数学第四单元测试题(苏教版)
六年级下册数学分数与百分数随堂检测题浙教版
三年级下册数学周长课后训练题沪教版
人教版一年级下册数学认识人民币同步检测题
2016中考数学备考辅导数学问题的学习策略及解决方案
一年级下册数学第四单元测试卷(沪教版)
人教版2016年一年级数学下册期中试题
2016中考数学考前必做专题试题函数
2016中考数学常见几何辅助线作法歌诀
小学六年级下册数学整数与小数同步练习题
一年级数学下册第四单元检测题(沪教版)
2016年六年级数学数的整除课后练习题第二学期
2016年中考数学考前模拟精练
2016年二年级下学期数学课后练习题整百、整千数加减法
小学一年级下册数学认识人民币课后训练题
2016年五年级下学期数学课后练习题体积与重量
沪教版二年级下册数学东南西北课后训练题
2016年春季学期一年级数学下册期中试题
让小学数学与生活接轨
2016年小学数学一年级下册第四单元检测题
2016年一年级下册数学期中测试题
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |