2016-10-25
收藏
特级教师 刘勋
文科考生说,我们不考数归法,我告诉你:归纳猜想验证,这是一个解答题、体现思维能力的好的思维模式。
分析、讨论、判断、取舍;归纳猜想验证;一般特殊相互转化,这些最基础、最常规的思维模式,妙用无穷,看似寻常最奇崛,成为容易却艰辛(王安石)。
2、方程式函数化
方程问题函数化,函数问题方程化,这两化把方程的思想,函数思想融为一体,相互转化,使利用函数性质解题这个数学的大课题生辉,诸如不等函数增、减等一系列的简单思维模式到处可用。
二次函数y=ax2+bx+c(a0)求极值方法之一是判别式法(函数问题方程化)∵方程ax2+bx+(c-y)=0有实根,△=b2-4a(c-y)0
4ay4ac-b2 a0时 y■即
y小=■;a0时,y■
即y大=■
例2.已知A、B是△ABC的两个内角,且tanA、tanB是方程x2+mx+m+1=0的两个实根,求实数m的取值范围。
韦达定理,和积关系常见转化方式
■
A+B=45x1=tanA1,x2=tanB1
且都大于0。
难点如何定m的范围:函数化。
f(x)=x2+mx+m+1有二正根且都在(0,1)之间的条件:(△0不能保证根的范围)
对照图象:
■
(为什么不必△0?你能很清晰吗?)
解得:-1
这是典型的方程问题函数化,确定参数取值范围的试题。
例3.(2008上海 理11)方程x2+■x-1=0的解可视为函数y=x+■的图像与函数y=■的图像交点的横坐标,若x4+ax-4=0的各个实根x1,x2,,xk(k4),所对应的点(x1,■)(i=1,2,,k)均在直线y=x的同侧,则实数a的取值范围是_________。
答案:(-,-6)(6,+)
●解法1:依题意x4+ax-4=0x3+a=■ 由图示及奇函数y=x3的图像关于原点对称的性质,得知当y=x3+a的图像从过B点起,向下平移或向上平移时,交点均在y=x同侧。
∵A(-2,2),B(2,2),把A、B坐标代入y=x3+a得a=-6或a=6,故a-6或a6即为所求。
●解法2:依题意,结合图形分析,■,得y=a+8或y=a-8
分别令y2或y-2,得a-6或a6。
[点拨评析]作为一道综合性较强、分值不高的填空题,从数形结合的思想出发,通过作图开辟解题思路,简明、具体。试题本身就在提示你,数形结合可以作为一种思维模式,实现方程化函数化的完美结合。
解题的通式、通法都可以从中提炼出可操作的模式,形成思维规律。如解不等式sinx■。如下思维操作定能做一题,通一类。
1.结合周期T=2,可先找x(0,2)的解集,再一般化;2.结合函数值的符号先肯定或否定两个区间:sinx■,Ⅲ、Ⅳ象限均不是解;3.结合单位圆先找相等的界限sinx=■,x=■或x=■;4.根据函数单调性,作取舍:■
小学三年级奥数(上册)知识点习题精讲 2
三年级奥数(下)第三讲 多笔画及应用问题 习题
三年级奥数(下)第十三讲 巧求周长习题
三年级奥数(下)第二讲 习题解答
三年级奥数(下)第五讲 归一问题 习题
三年级奥数(下)第八讲 差倍问题 习题解答
三年级奥数(下)第八讲 差倍问题
三年级奥数(下)第八讲 差倍问题 习题
三年级奥数(下)第四讲 最短路线问题 习题
三年级奥数(下)第十二讲 盈亏问题 习题
三年级奥数(下)第十四讲 从数的二进制谈起习题
三年级奥数(下)第五讲 归一问题
三年级奥数(下)第三讲 多笔画及应用问题 习题解答
三年级奥数(下)第十四讲 从数的二进制谈起
三年级奥数(下)第七讲 和倍问题 习题
三年级奥数(下)第一讲 从数表中找规律 习题
三年级奥数(下)第十一讲 鸡兔同笼问题习题
三年级奥数(下)第九讲 和差问题
三年级奥数(下)第四讲 最短路线问题 习题解答
三年级奥数(下)第一讲 从数表中找规律 习题解答
三年级奥数(下)第九讲 和差问题 习题
三年级奥数(下)第四讲 最短路线问题
三年级奥数(下)第二讲 从哥尼斯堡七桥问题谈起
三年级奥数(下)第十四讲 从数的二进制谈起习题解答
三年级奥数(下)第六讲 平均数问题
小学三年级奥数(上)第十五讲 综合练习题
三年级奥数(下)第二讲 从哥尼斯堡七桥问题谈起 习题
三年级奥数(下)第十三讲 巧求周长习题解答
三年级奥数(下)第十三讲 巧求周长
三年级奥数(下)第十二讲 盈亏问题 习题解答
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |