高考数学解题思想:极限思想解题步骤_考前复习 - 查字典数学网
数学高考数学解题思想:极限...
首页>学习园地>考前复习>高考数学解...

高考数学解题思想:极限思想解题步骤

2016-10-25 收藏

高考数学复习是有规律有内部联系的复习过程,在所有题型中一直串联着数学思想在里面,而不是单独的进行题海战术,做会一道题,完全掌握解题思维好于单独做100道题。

数学网高考频道整理高考数学蕴含的六大数学思想,大题无外乎就这几类,吃透规律事半功倍。

高考数学解题思想:极限思想

极限思想是指用极限概念分析问题和解决问题的一种数学思想。极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

例8 已知点A(0,■),B(0,-■),C(4+■,0)其中n为正整数,设Sn表示△ABC外接圆的面积,则■Sn= 。

分析:本题的一般解题方法为求出△ABC的外接圆Sn的表达式,再根据数列极限的计算法则得出结果。这一方法有一定的运算量,如果我们能根据图形看出当n→∞时△ABC的极限位置是一条线段,其端点坐标为M(0,0),N(4,0),故它的外接圆有极限位置是以为MN直径的圆。

解:■Sn=4π。

例9 将直线l1:nx+y-n=0、l2:x+ny-n=0(n∈N?鄢)、x轴、y轴围成的封闭区域的面积记为Sn,则■Sn= 。

分析:将直线l1,l2的方程化为l1:y=-n(x-1),l2:y=-■x+1,当n→∞时,它们的极限位置分别为直线x=1和直线y=1,于是它们与x,y轴围成的图形是边长为1的正方形。

解:■Sn=1。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限