2016-10-25
收藏
高考数学大题题型无外乎就那几类,经常有各个知识点混合题型出现,现在开始培养数学解题思维,举一反三,寻找模式,巧解大题。
**点击标题查看数学实例解读**
高考数学解题思想一:函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。
高考数学解题思想二:数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
高考数学解题思想三:特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
高考数学解题思想四:极限思想解题步骤
极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
高考数学解题思想五:分类讨论思想
我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
人教版小学数学《求最大公因数》教后反思
小学数学《住新房》教学反思
《三位数的退位减法》教学反思
《求一个数比另一个数多几(少几)》教学反思
我看数学审题教学
《圆柱的体积》教学反思二
《求一个数是另一个数的几倍》教学反思
《两位数乘两位数进位的乘法》教学反思
小学数学《小数乘法》教学反思二
小学数学《商中间或末尾有零的除法》教学反思
《数的世界》教学反思
《分一分》教学反思二
《20以内的退位减法》教学反思
《小数点的移动》教学反思
谈数学教学中的有效提问
《正、反比例练习》教学反思
六年级下册《图形的放大与缩小》教学反思
北师大六年级下册《反比例》教学反思
《6和7的认识》教学反思二
第四册《解决问题》教学反思
人教版小学数学《约分》教学反思
《单名数的改写》教学反思
人教版数学第十册《最大公约数》教学反思
北京版《分数的基本性质》教学反思
《商中间有0的除法》教学反思
《读数 写数》教学反思
北师大版数学教材《左右》教学反思
《表内除法一整理与复习》教学反思
《期末复习——百分数》教学反思
《最大公约数、最小公倍数比较》教学反思
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |