2015高考数学备考:做好高考数学题的12种方法_考前复习 - 查字典数学网
数学2015高考数学备考:...
首页>学习园地>考前复习>2015高...

2015高考数学备考:做好高考数学题的12种方法

2016-10-25 收藏

在日常与学生接触过程中,常有学生这样抱怨:“不知道为什么,有时候看起来很简单的数学题目,我往往不能拿到满分。”

为什么看起来很简单的题目,我们总是不能拿到满分呢?

其实,这就是因为我们在做数学题目的过程中,走进了这样几个误区:

其一,重结果,轻过程。

其二,对做错的题目,没有提起足够的重视。

1.先说第一点,重结果,轻过程。

相信,很多同学都曾犯过这样的错误:拿到一道题目之后,看题目很简单,就会急于下笔。结果,思维活跃,笔走龙蛇,虽然很快就得出了答案,却因为匆忙之中丢掉了不少步骤,不能顺利拿到满分。

针对这种情况,我们该怎么办呢?

一位数学成绩优秀的同学这样分享经验:

“很多同学数学思维很好,但是一下笔就丢分,这就要求我们平时练习时一定要把每个解题步骤都写全。”

数学备考自然要做题,但是,有些同学只关注结果,答案对了就行了,不重视步骤,这显然就的非常不明智的。要知道,在解答数学题目的过程中,每一个步骤都关系着最终的结果,一步错,则差之毫厘谬以千里。所以,在做数学题目的过程中领悟各种解题思路和方法才应该是我们做题的最终目的。

2.再说说第二点,对做错的题目,不能提起足够的重视。

也许你也曾有过这样的经历:在做题时,碰到了一道似曾相识的题目,往往拿不定主意究竟该用哪种方法去解,有时候虽然做出来了,结果还是不免以错误收场。

这其中的原因何在呢?就是因为我们对错题没有引起足够的重视。没有将那些做错的题目及时消化吸收。

那些数学成绩优秀的学生从来不会这样做,一位顺利考入清华大学的学子就这样说:

“在学习数学上,我并没有下很大的功夫,只是习惯每天将做错的题目整理一遍。数学题量大,老师每天都会发一张试卷,头天做了第二天就讲评。老师每次讲评之后就,我就会把那些做错的题目整理到错题本上,A4大小的本子,我记了不少页,每页至少两三道题,多则七八道,到每次考试时,光是看这些错题就能花费我一天的时间。对这些错题,我会重新整理一下思路,再着手推理一遍,如果是因为方法上的问题错了,就会及时去请教老师。

“因为一直坚持这样做,我在做数学题目的时候就很少遇到‘被相同的石头绊倒’的情况。”

的确,学习数学最怕的就是懒惰,遇到不懂的问题、容易做错的题目,一定不能心存大意,而要用心弄清楚每一个知识点。不断重复自己做错的题目,标清自己每一个错误点,在改错本上清晰地写出每一步,直至把这些模糊的知识彻底弄懂为止。一步一个脚印地走下去,你的数学成绩就能日见起色。

方法五 一“慢”一“快”,相得益彰

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

方法六 确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

方法七 讲求规范书写,力争既对又全

考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。

方法八 面对难题,讲究方法,争取得分

会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。

1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

方法九 以退求进,立足特殊

发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

方法十 执果索因,逆向思考,正难则反

对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

方法十一 回避结论的肯定与否定,解决探索性问题

对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

方法十二 应用性问题思路:面—点—线

解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限