2016-10-25 收藏
教学目的
1.使学生进一步掌握简单应用题的结构,能够根据四则运算的意义和题目中的数量关系正确选择解答方法.
2.通过教学,进一步提高学生分析和解答应用题的能力.
3.探索知识间的内在联系,激发学生的学习兴趣.
教学重点
掌握简单应用题的结构,正确解答简单应用题.
教学难点
掌握简单应用题的数量关系.
教学过程
一、基本训练.
1.口算.
2.2+3.57 1.2
1.4- +0.5 11.3-8.6
( + )12 (0.18+ )9 7.75- -
2.下面各题只列式不计算.
(1)六年级学生为灾区捐款,六年级1班捐款105元,六年级2班捐款98元.两个班一共捐款多少元?
(2)学校图书馆买来150本故事书,借给五年级1班48本,还剩多少本?
(3)农具厂每天能够生产56件农具,7天能够生产多少件农具?
(4)水果店有24筐苹果,要6天卖完,平均每天要卖多少筐苹果?
(5)成绩展览会上要展出48本大字本,每张桌子上放8本,需要几张桌子?
(6)五年级有学生136人,其中 是女生,女生有多少人?
二、归纳整理.
揭示课题:今天我们就来复习这样的简单应用题.(板书:简单应用题的整理和复习)
(一)教学例1:某工厂有男工人364人,女工91人.这个厂的男工和女工一共有多少人?
教师提问:这道题有哪几个已知条件?
问题是什么?
问题与已知条件有什么关系?
你为什么要这样回答?
教师总结:
这道题中,需要求的结果与两个已知条件直接相关.只要把两个已知数合并起来,就可以直接计算出结果.这是一道简单应用题.
(二)变式练习.
1.改变问题:根据例1中的两个已知条件,你还能够提出其他问题,编成简单应用题吗?
①男工比女工多多少人?
②男工人数是女工人数的几倍?
③女工人数是男工人数的几分之几?
2.改变条件:根据上面编出的应用题和列出的算式,你能够分别调换每一道题中的已知条件和问题,各编成两道不同的简单应用题吗?
①某工厂男工和女工一共有455人,男工有364人,女工有多少人?
②某工厂男工和女工一共有455人,女工有91人,男工有多少人?
③某工厂有女工91人,男工比女工多273人,男工有多少人?
④某工厂女工比男工少273人,女工有91人,男工有多少人?
⑤某工厂有女工91人,男工人数是女工人数的4倍,男工有多少人?
⑥某工厂有男工364人,女工人数是男工人数的 ,女工有多少人?
⑦某工厂男工人数是女工人数的4倍,男工有364人,女工有多少人?
⑧某工厂有女工91人,女工人数是男工人数的 ,男工有多少人?
教师提问:通过我们的编题,你发现了简单应用题的什么特点?你的收获是什么?
教师总结:从以上的编题可以看出,简单应用题都是由两个已知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的.也就是说,都是可以由已知条件经过一步计算直接求出答案.
2016高考数学:空间中的垂直关系
2016高考数学备考 名师建议多总结
2016高考数学备考 函数基本问题
2016高考数学:基本算法语句
2016高考二轮复习:高考数学二轮复习四大策略
2016高考数学备考 五种高效冲刺方法
2016高考数学 常见题型解析
高考数学复习 考生应该刷题、背诵相结合
高三生如何突破数学中等成绩
2016高考数学:排列与组合
2016高考数学复习方法总结:利用函数图像解题
2016高考数学:离散型随机变量及其分布列
2016高考数学:空间中的平行关系
2016高考备考 图解高中数学知识
2016高考数学:二项式定理
2016高考数学:数学归纳法
2016高考备考 高考数学易错点总结
2016高考数学备考专题 证明题解答
2016高考数学:空间点、直线、平面之间的位置关系
2016高考数学新课标1卷命题趋势及特点
2016高考数学:立体几何中的向量方法
2016高考数学 备考冲刺策略
12种超级实用的数学解题方法
噌噌噌!这就是我理综成绩上涨的声音!
高考数学复习技巧 注重思路
2016年高考复习:高三理数复习四大忌
2016高考 考场得分技巧
2016高考数学:变量的相关性 统计案例
2016高考数学:空间向量及其运算
2016高考数学:均值不等式
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |