2016-10-25
收藏
数学网整理高中数学知识点总结:包括有关函数、数列、平面解析几何、立体几何等知识点的整理。
数学网各科复习资料:http://gaokao.xdf.cn/list_1019_1.html
棱锥具有的性质:
①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).
②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.
⑶特殊棱锥的顶点在底面的射影位置:
①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.
②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.
③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.
④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.
⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.
⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.
⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;
⑧每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径.
[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)
ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.
简证:AB⊥CD,AC⊥BD BC⊥AD. 令得,已知
则.
iii. 空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.
iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.
简证:取AC中点,则平面90°易知EFGH为平行四边形EFGH为长方形.若对角线等,则为正方形.
除数是整数的小数除法3
平行四边形的面积3
平行四边形的面积2
一个数乘以小数意义及计算4
一个数乘以小数意义及计算6
小数除法意义及除数是整数2
小数乘以整数意义及计算方法1
小数除法的意义及计算除数
计算一个数除以小数及给商3
《长方形面积的计算》
一个数乘以小数意义及计算2
小学数学三年级下册《认识小数》[人教新课标]
计算一个数除以小数及给商1
数学广角集合
方程的意义及如何解方程准备
平行四边形的面积例题二
平行四边形和梯形练习一
一个数乘以小数意义及计算1
平行四边形和梯形概念一
一个数乘以小数意义及计算5
计算一个数除以小数及给商4
方程的意义及如何解方程练习2
小数连乘和乘加、乘减混合运算2
平行四边形和梯形概念二
平行四边形的面积例题三
平行四边形面积1
计算一个数除以小数及给商
小数连除和除加、除减混合4
小数连乘和乘加、乘减混合运算4
小数连乘和乘加、乘减混合运算3
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |