2016-10-25
收藏
高中数学的内容多,抽象性、理论性比初中数学强,不少同学,特别是高一年级的学生进入高中学习后,如果还是使用原来的学习方式,不懂得更新学习方法,很可能会不适应高中数学的学习,从而很难掌握高中的数学知识,于是对数学的学习产生厌烦的想法。学好高一数学的确不是易事,高考频道建议新高一生从一个一个的知识点抓起,循序渐进,融会贯通。下面先来学习高一数学二次函数的概念和基本用法。
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a;0时,开口方向向上,a;0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x=-b/2a.
对称轴与抛物线唯一的交点为抛物线的顶点P.
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
顶点坐标
对称轴
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
当h;0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h;0时,则向左平行移动|h|个单位得到.
当h;0,k;0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h;0,k;0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h;0,k;0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h;0,k;0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a;0时,开口向上,当a;0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a;0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a;0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac;0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△;0.图象与x轴没有交点.当a;0时,图象落在x轴的上方,x为任何实数时,都有y;0;当a;0时,图象落在x轴的下方,x为任何实数时,都有y;0.
5.抛物线y=ax^2+bx+c的最值:如果a;0(a;0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
2015高中数学北师大版必修4《正切函数的诱导公式》word导学案
高中数学北师大版必修4第一章《函数y=Asin(ωx+φ)的图象》word教案1
2015高中数学北师大版必修4《正切函数的图像与性质及其应用》word导学案
高中数学北师大版必修4第1章5《正弦函数的性质》word导学案
2013北师大版必修四《三角函数模型的简单应用》word教案
高中数学北师大版必修4第1章1-2《周期现象与角的概念的推广》word导学案
高中数学北师大版必修4第2章4《从速度的倍数到数乘向量》word导学案1
高中数学北师大版必修4第1章7《正切函数的定义、图像与性质》word导学案
2013北师大版必修四《二倍角的正弦、余弦、正切》word教案
2015高中数学北师大版必修4《简单的三角恒等变换》word导学案
2015高中数学北师大版必修4《正弦函数的图像与性质》word导学案
高中数学北师大版必修4第1章5《正弦函数的图像》word导学案
高中数学北师大版必修4第一章《函数y=Asin(ωx+φ)的图像》word教案2
高中数学北师大版必修4第1章《三角函数小结》word导学案
高中数学北师大版必修4第2章10《平面向量数量积的坐标表示》word导学案
高中数学北师大版必修4第1章8《函数的图像》word导学案2
高中数学北师大版必修4第一章《弧度制》word教案1
高中数学北师大版必修4第1章4《单位圆与诱导公式》word导学案2
2015高中数学北师大版必修4《探索函数y=Asin(ωx φ)的图像及性质》word导学案
2013北师大版必修四《平面向量应用举例》word教案1
高中数学北师大版必修4第1章6《余弦函数的图像和性质》word导学案
高中数学北师大版必修4第一章《典型例题正弦、余弦的诱导公式》word例题讲解素材
高中数学北师大版必修4第1章9《三角函数的简单应用》word导学案
2015高中数学北师大版必修4《弧度制》word导学案
高中数学北师大版必修4第2章11《向量应用举例》word导学案1
2013北师大版必修四《三角函数(和差化积、积化和差)公式》word教案
高中数学北师大版必修4第2章12《向量应用举例》word导学案2
高中数学北师大版必修4第1章3《弧度制》word导学案
2013北师大版必修四《二倍角的正弦、余弦和正切公式》word教案
高中数学北师大版必修4第1章4《任意角的正弦函数、余弦函数的定义》word导学案
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |