在学习几何知识时,同学们已经学过如下两个结论:
(1)连结两点的所有线中,直线段是最短的;
(2)直线外的一个定点与直线上的各点的连线以垂线为最短.
利用这两个结论可以解决许多实际生活中求最短路线的问题.
例1 甲、乙两村之间隔一条河,如图131.现在要在小河上架一座桥,使得这两村之间的行程最短,桥应修在何处?
所谓预先将桥长扣除,就是假设先走完桥长,即先把桥平移到甲村,先过了桥,到c点,如图132,找出c到b的最短路线,实际上求最短折线问题转化为直线问题.
解:如图132.过a点作河岸的垂线,在垂线上截取ac的长等于河宽.连bc交与乙村的河岸于f点,作ef垂直于河的另一岸于e点,则ef为架桥的位置,也就是ae+ef+fb是两村的最短路线.
解:作点b关于公路(将公路看作是一条直线)的对称点b,如图134,即过b点作公路(直线)的垂线交直线于o,并延长bo到b,使bo=ob.连结ab交直线于点e,连be,则车站应建在e处,并且折线aeb为最短.
(1)因为b与b关于直线对称,根据对称点的性质知,对称轴上的点到两个对称点的距离相等,有be=be,所以
ab=ae+eb=ae+eb
(2)设e是直线上不同于e的任意一点,如图135,连结ae、eb、eb,可得
分享到: 新浪微博 腾讯微博 QQ空间 QQ好友 人人网 百度贴吧 复制网址
上式说明,如果在e点以外的任意一点建车站,所行的路程都大于折线aeb.
所以折线aeb最短.
例3 如图136,河流ef与公路fd所夹的角是一个锐角,某公司a在锐角efd内.现在要在河边建一个码头,在公路边修建一个仓库,工人们从公司出发,先到河边的码头卸货,再把货物转运到公路边的仓库里去,然后返回到a处,问仓库、码头各应建在何处,使工人们所行的路程最短.
分析:工人们从a出发先到河边码头,再到公路的仓库,然后回到a处,恰好走一个三角形,现在要求三角形的另外两个顶点分别建在河岸与公路的什么位置能使这个三角形的三边之和为最小,利用轴对称原理作图.
分析:因为是在长方体的表面爬行,求的是立体图形上的最短路线问题,往往可以转化为平面上的最短路线问题.将蚂蚁爬行经过的两个面展开在同一平面上,如图139,在展开图中,ab间的最短路线是连结这两点的直线段,但要注意,蚂蚁可沿几条路线到达b点,需对它们进行比较.
解:蚂蚁从a点出发,到b点,有三条路线可以选择:
(1)从a点出发,经过上底面然后进入前侧面到达b点, 将这两个平面展开在同一平面上,这时a、b间的最短路线就是连线ab,如图139(1),ab是直角三角形abc的斜边,根据勾股定理,ab2=ac2+bc2=(1+2)2+42=25
ab2=22+(1+4)2=29
(3)从a点出发,经过上底面,然后进入右侧面到达b点,将这两个面展开在同一平面上,如图139(3),得
ab2=(2+4)2+12=37
例5 如图1310,在圆柱形的木桶外,有一个小甲虫要从桶外的a点爬到桶内的b点.已知a点到桶口c点的距离为14厘米,b点到桶口d点的距离是10厘米,而c、d两点之间的弧长是7厘米.如果小甲虫爬行的是最短路线,应该怎么走?路程是多少?
解:如图1311,将圆柱体侧面展成平面图形.作点b关于直线cd的对称点b,连结ab,ab是a、b两点间的最短距离,与桶口边交于o点,则ob=ob,ab=ao+ob,那么a、b之间的最短距离就是ao+ob,所以小甲虫在桶外爬到o点后,再向桶内的b点爬去,这就是小甲虫爬行的最短路线.
ab2=ae2+eb2=242+72=625
所以ab=25(厘米)
即小甲虫爬行的最短路程是25厘米.