我们平常分东西(或分配任务,或为完成一件事分配时间),不同的分法就有不同的结果,有时会有剩余(就是盈),有时会不够(就是亏),有时正好分完(不盈不亏),从不同的分法得到不同的结果可以解答很多问题,这就是盈亏问题,解答这些问题时,要正确地把对应的数量进行比较。
例1:同学们为学校搬砖,每人搬8块,还剩16块;每人搬10块,有3人没砖搬,要搬的砖有多少块?
解:为便于比较,每人搬10块有3人没砖搬,这一组条件可以转换为每人搬10块,缺砖310=30(块),这样把两组对应的数量列出如下:
每人8块 剩16块
每人10块 缺30块
上下对比,每人多搬砖10-8=2(块),一共可多搬砖16+30=46(块),参加搬砖的同学有462=23(人),要搬的砖有823+16=200(块)。
答:要搬的砖有200块。
例2:把一包糖分给一些小朋友,如果每人分8粒还剩18粒,如果其中10个小朋友每人分7粒,其余的小朋友每人分10粒,就刚好分完。有多少个小朋友?这包糖有多少粒?
解:第二种分法分7粒的小朋友是10人,分10粒的小朋友是其余的,不知道人数,可以这样转换,如果分7粒的小朋友这10人也每人分10粒,即这10人每人多分10-7=3(粒),就要多分去310=30(粒),于是,两组对应数量如下:
8粒 剩18粒
每人10粒 缺30粒
上下对比,每人多分10-8=2(粒),一共要多分糖18+30=48(粒),这些小朋友的人数是:482=24(人),这包糖有248+18=210(粒)。
答:有24个小朋友,这包糖有210粒。
例3:小军骑自行车从甲地到乙地,出发时心理盘算了一下,慢慢地骑行,每小时行10千米,下午1时才能到;使劲地赶路,每小时行15千米,上午11时就能到,如果要正好在中午12时到,每小时应行多少千米?
解:题中的条件,两个不同的骑车速度,行两地路程到达的时间分别是下午1时和上午11时,即后一速度用的时间比前一速度少2小时,为便于比较,可以以行到下午1时作为标准,算出用后一速度行到下午1时,从甲地到乙地可以比前一速度多行152=30(千米),这样,两组对应数量如下:
每小时行10千米 下午1时正好从甲地到乙地
每小时行15千米 下午1时比从甲地到乙地多行30千米
上下对比每小时多行15-10=5(千米),行同样时间多行30千米,从出发到下午1时,用的时间是305=6(小时),甲地到乙地的路程是 106=60(千米),行6小时,下午1时到达,出发的时间是上午7时,要在中午12时到,即行12-7=5(小时),每小时应行605=12(千米)。
答:每小时应行12千米。