涉及4个或4个以上的对象,已知数量关系,不便直接运用,与其它知识相关联的复杂和差倍问题。
【典型问题】
1. 四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共有多少人?
解答:用131+134=265,这是1个甲、丁和2个乙、丙的总和,因为乙、丙两班的总人数比甲、丁两班的总人数少1人,所以用 265-1=264就刚好是3个乙、丙的和,264÷3=88,就是说乙丙的和是88,那么甲丁和是88+1=89,所以四个班的和是88+89=177 人.
2. 有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?
解答:大家想想,我如果把4个数全加起来是什么?实际上是每个数都加了3遍!大家一定要记住这种思想!(45+46+49+52)÷3=64就是这四个数的和,题目要求最小的数,我就用64减去52(某三个数和最大的)就是最小的数,等于12.
3. 在一个两位数之间插入一个数字,就变成一个三位数。例如:在72中间插入数字6,就变成了762。有些两位数中间插入数字后所得到的三位数是原来两位数的9倍,求出所有这样的两位数。
解答:对于这个题来说,首先要判断个位是多少,这个数的个位乘以9以后的个位还等于原来的个位,说明个位只能是0或5!先看0,很快发现不行,因为20×9=180,30×9=270,40×9=360等等,不管是几十乘以9,结果百位总比十位小,所以各位只能是5。略作计算,不难发现:15,25,35,45是满足要求的数
4. 某班买来单价为0.5元的练习本若干,如果将这些练习本只给女生,平均每人可得15本;如果将这些练习本只给男生,平均每人可得10本。那么,将这些练习本平均分给全班同学,每人应付多少钱?