高二数学《二元一次不等式组》知识点讲解-查字典数学网
数学高二数学《二元一次不等...
首页>学习园地>知识点总结>高二数学《...

高二数学《二元一次不等式组》知识点讲解

2016-11-21

想要更好的学习数学首先要做的就是理解运用课本中的知识,因此为同学们整理了高二数学二元一次不等式组知识点,希望大家可以更快更好的提高成绩。

【练习题】

高二数学必修同步练习题二元一次不等式(组)  

【定义】

有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

二元一次方程定义:一个含有两个未知数,并且未知数的指数都是1的整式方程,叫二元一次方程。

二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。

二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的解:一般的,二元一次方程组的两个一元二次方程的公共解,叫做二元一次方程组的解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

【消元的方法】

消元的方法有两种:

代入消元法

例:解方程组 :

x+y=5①

6x+13y=89②

解:由①得

x=5-y③

把③代入②,得

6(5-y)+13y=89

即 y=59/7

把y=59/7代入③,得

x=5-59/7

即 x=-24/7

∴ x=-24/7

y=59/7 为方程组的解

我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。

加减消元法

例:解方程组:

x+y=9①

x-y=5②

解:①+②

2x=14

即 x=7

把x=7代入①,得

7+y=9

解,得:y=2

∴ x=7

y=2 为方程组的解

像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。

【二元一次方程组的解】

二元一次方程组的解有三种情况:

1.有一组解

如方程组x+y=5①

6x+13y=89②

x=-24/7

y=59/7 为方程组的解

2.有无数组解

如方程组x+y=6①

2x+2y=12②

因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解

如方程组x+y=4①2x+2y=10②,

因为方程②化简后为x+y=5

这与方程①相矛盾,所以此类方程组无解。

高二数学二元一次不等式组知识点掌握了吗?

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •