高中数学《随机事件及其概率》课堂练习-查字典数学网
数学高中数学《随机事件及其...
首页>学习园地>知识点总结>高中数学《...

高中数学《随机事件及其概率》课堂练习

2013-08-07

 

【小编寄语】查字典数学网小编给大家整理了高中数学《随机事件及其概率》课堂练习 ,希望能给大家带来帮助!

当堂练习:

1.下面事件:①在标准大气压下,水加热到800C时会沸腾;②掷一枚硬币,出现反面;③实数的绝对值不小于零。是不可能事件的有( )

A.②; B.①; C.①② ; D.③

2

下面事件:①连续两次掷一枚硬币,两次都出现正面朝上;②异性电荷,相互吸引;③在标准大气压下,水在00C结冰,是随机事件的有( )

A.②; B.③; C.①; D.②、③

3.某地区的年降水量在下列范围内的概率如下表所示

年降水量(单位:mm)[100,150)[150,200)[200,250)[250,300)

概率0.120.250.160.14

则年降水量在[150,300](mm)范围内的概率为( )

A.0.41 B.0.45 C.0.55 D.0.67

4.下面事件:①如果a, b∈R,那么a·b=b·a;②某人买彩票中奖;③3 +5>10;是必然事件有( )

A.① ; B.②; C.③; D.①、②

5.下列叙述错误的是( )w.w.w.k.s.5.u.c.o.m

A.频率是随机的,在试验前不能确定,随着试验次数的增加,频率一般会越来越接近概率

B.若随机事件A发生的概率为

 

,则

 

C.互斥事件不一定是对立事件,但是对立事件一定是互斥事件

D.5张奖券中有一张有奖,甲先抽,乙后抽,那么乙与甲抽到有奖奖券的可能性相同

6.下列说法:

①既然抛掷硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上;

②如果某种彩票的中奖概率为

 

,那么买1000张这种彩票一定能中奖;

③在乒乓球、排球等比赛中,裁判通过让运动员猜上抛均匀塑料圆板着地是正面还是

反面来决定哪一方先发球,这样做不公平;

④一个骰子掷一次得到2的概率是

 

,这说明一个骰子掷6次会出现一次2.

其中不正确的说法是( )

A.①②③④  B.①②④   C.③④  D.③

7.下列说法:(1)频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;(2)做

 

次随机试验,事件

 

发生的频率

 

就是事件的概率;(3)百分率是频率,但不是概率;(4)频率是不能脱离具体的

 

次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;(5)频率是概率的近似值,概率是频率的稳定值.其中正确的是( )

A.(1)(4)(5)B.(2)(4)(5) C.(1)(3)(4)D.(1)(3)(5)

8.下面语句可成为事件的是( )

A.抛一只钢笔  B.中靶 C.这是一本书吗  D.数学测试,某同学两次都是优秀

9.同时掷两枚骰子,点数之和在

 

点间的事件是事件,点数之和为12点的事件是 事件,点数之和小于2或大于12的事件是事件,点数之差为6点的事件是事件.( )

A.随机、必然、不可能、随机 B.必然、随机、不可能、不可能

C.随机、必然、随机、随机   D.必然、随机、随机、不可能

10.10件产品中有8件正品,两件次品,从中随机地取出3件,则下列事件中是必然事

件的为( )

A.3件都是正品 B.至少有一件次品 C.3件都是次品 D.至少有一件正品

11.100件产品中,95件正品,5件次品,从中抽取6件:至少有1件正品;至少有3件是次品;6件都是次品;有2件次品、4件正品.以上四个事件中,随机事件的个数是( )

A.3 B.4 C.2 D.1

12.从一批准备出厂的电视机中,随机抽取10台进行质检,其中有一台是次品,则这批电视机中次品率( )

A.大于0.1 B.小于0.1 C.等于0.1 D.不确定

13.若在同等条件下进行

 

次重复试验得到某个事件A发生的频率

 

,则随着

 

的逐

渐增大,有( )

A.

 

与某个常数相等 B.

 

与某个常数的差逐渐减小

C.

 

与某个常数的差的绝对值逐渐减小 D.

 

与某个常数的附近摆动并趋于稳定

14.在200件产品中,有192件一级产品,8件二级产品, 则事件

①“在这200件产品中任意选出9 件,全部是一级品”②“在这200件产品中任意选出9件,全部是二级品”③“在这200件产品中任意选出9 件,不全是一级品” ④ “在这200件产品中任意选 出9 件,其中不是一级品的件数小于100” 中,

是必然事件;   是不可能事件;   是随机事件.

15.袋内有大小相同的四个白球和三个黑球,从中任意摸出3个球,其中只有一个黑球的概率是 .

16.对某电视机厂生产的电视机进行抽样检测,数据如下:

抽取台数501002003005001000

优等品数4792192285478952

则该厂生产的电视机优等品的概率为 .

17.投掷红、蓝两颗均匀的骰子,观察出现的点数,至多一颗骰子出现偶数点的概率是 .

年降雨量/mm

 

 

 

 

概率0.120.250.160.14

18.2005年降雨量的概率如下表所示:

(1)求年降雨量在

 

范围内的概率;

(2)求年降雨量在

 

 

范围内的概率;

(3)求年降雨量不在

 

范围内的概率;

(4)求年降雨量在

 

范围内的概率.

19.把一颗均匀的骰子投掷

 

次,记第一次出现的点数为

 

,第一次出现的点数为

 

,试就方程组

 

解答下列各题:

(1)求方程组只有一个解的概率;

(2)求方程组只有正数解的概率.

20.(1)某厂一批产品的次品率为

 

,问任意抽取其中10件产品是否一定会发现一件次品?为什么?(2)10件产品中次品率为

 

,问这10件产品中必有一件次品的说法是否正确?为什么?

21.某篮球运动员在同一条件下进行投篮练习,结果如下表所示:

投篮次数

 

8101520304050

进球次数

 

681217253238

进球频率

 

(1)计算表中进球的频率;

(2)这位运动员投篮一次,进球概率约是多少?

参考答案:

经典例题:解(1)1999年男婴出生的频率为

 

同理可求得2000年、2001年和2002年男婴出生的频率分别为0.521,0.512,0.512;

(2) 各年男婴出生的频率在

 

之间,故该市男婴出生的概率约为0.52.

当堂练习:

1.B; 2.C; 3.C; 4.A; 5.A; 6.A; 7.A; 8.D; 9.B; 10.D; 11.C; 12.D; 13.D; 14. ③④,①,②; 15. 18/35; 16. 0.9516; 17. 0.25;

18. 解:(1)年降雨量在

 

范围内的概率为0.12+0.25=0.37;

(2)年降雨量在

 

 

范围内的概率为0.12+0.14=0.26;

(3)年降雨量不在

 

范围内的概率为1-0.25-0.16-0.14=0.45;

(4)年降雨量在

 

范围内的概率为0.12+0.25+0.16+0.14=0.67.

19. 解:(1)如果方程组只有一解,则

 

,即

 

∴方程组只有一个解的概率为

 

;

(2)当方程组只有正解时,则

 

∴概率为

 

.

20. 解:(1)错误.(2)正确.

21. 解:(1)进球的频率分别为

 

 

 

 

 

 

 

(2)由于进球频率都在

 

左右摆动,故这位运动员投篮一次,进球的概率约是

 

.

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •