沪科版八年级数学上第14章全等三角形检测题(含答案)_题型归纳 - 查字典数学网
数学沪科版八年级数学上第1...
首页>学习园地>题型归纳>沪科版八年...

沪科版八年级数学上第14章全等三角形检测题(含答案)

2016-10-06 收藏

经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形。接下来我们一起来练习沪科版八年级数学上第14章全等三角形检测题。

沪科版八年级数学上第14章全等三角形检测题(含答案)

一、选择题(每小题3分,共30分)

1. 下列说法正确的是( )

A.形状相同的两个三角形全等

B.面积相等的两个三角形全等

C.完全重合的两个三角形全等

D.所有的等边三角形全等

2. 如图所示, 分别表示△ABC的三边长,则下面与△ 一定全等的三角形是()

C D

3. 在△ 中,∠ ∠ ,若与△ 全等的一个三角形中有一个角为95°,那么95°的角在△ 中的对应角是( )

A.∠ B.∠

C.∠D D.∠ ∠

4. 在△ABC和△ 中,AB= ,∠B=∠ ,补充条件后仍不一定能保证△ABC≌ △ ,则补充的这个条件是( )

A.BC= B.∠A=∠

C.AC= D.∠C=∠

5. 如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()

A.△ACE≌△BCD B.△BGC≌△AFC

C.△DCG≌△ECF D.△ADB≌△CEA

6. 要测量河两岸相对的两点 的距离,先在 的垂线 上取两点 ,使 ,再作出 的垂线 ,使 在一条直线上(如图所示),可以说明△ ≌△ ,得 ,因此测得 的长就是 的长,判定△ ≌△ 最恰当的理由是()

A.边角边 B.角边角 C.边边边 D.边边角

7. 已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()

A.∠A与∠D互为余角

B.∠A=∠2

C.△ABC≌△CED

D.∠1=∠2

8. 在△ 和△FED 中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件( )

A.AB=ED B.AB=FD

C.AC=FD D.∠A=∠F

9. 如图所示,在△ABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,其中一定正确的是()

A.①②③ B.②③④ C.①③⑤ D.①③④

10. 如图所示,在△ 中, >, ∥ =,点 在 边上,连接 ,则添加下列哪一个条件后,仍无法判定△ 与△ 全等()

A. ∥ B. C.∠ =∠ D.∠ =∠

二、填空题(每小题3分,共24分)

11.(2015•黑龙江齐齐哈尔中考)如图,点B,A,D,E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是 .(只填一个即可)

12. 如图,在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是 .

13.6个边长相等的正方形的组合图形如图所示,则∠1+∠2+∠3= .

14.如图所示,已知在等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE= 度.

15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .

16.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=8 cm,BD=5 cm,那么点D到直线AB的距离是 cm.

17.如图所示,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,

且OD=3,则△ABC的面积是 .

18.如图所示,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=

15 cm,则△DEB的周长为 cm.

三、解答题(共46分)

19.(6分)(2015•重庆中考)如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.

20.(8分)如图所示,△ABC≌△ADE,且∠CAD=10°∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.

21.(6分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.

求证:(1)EC=BF;

(2)EC⊥BF.

22.(8分) 如图所示,在△ABC中,∠C=90°, AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.

证明:(1)CF=EB;(2)AB=AF+2EB.

23.(9分)如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.

24.(9分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.

(1)过点B作BF⊥CE于点F,交CD于点G(如图①),求证:AE=CG;

(2)过点A作AH⊥CE,交CE的延长线于点H,并交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.

第14章 全等三角形检测题参考答案

1. C 解析:能够完全重合的两个三角形全等,故C正确;

全等三角形大小相等且形状相同,形状相同的两个三角形相似,但不一定全等,故A错;

面积相等的两个三角形形状和大小都不一定相同,故B错;

所有的等边三角形不全等,故D错.

2. B 解析:A.与三角形 有两边相等,但夹角不一定相等,二者不一定全等;

B.与三角形 有两边及其夹角相等,二者全等;

C.与三角形 有两边相等,但夹角不相等,二者不全等;

D.与三角形 有两角相等,但夹边不相等,二者不全等.

故选B.

3. A 解析:一个三角形中最多有一个钝角,因为∠ ∠ ,所以∠B和∠ 只能是锐角,而∠ 是钝角,所以∠ =95°.

4. C 解析:选项A满足三角形全等判定条件中的边角边,

选项B满足三角形全等判定条件中的角边角,

选项D满足三角形全等判定条件中的角角边,

只有选项C 不满足三角形全等的条件.

5. D 解析:∵ △ABC和△CDE都是等边三角形,

∴ BC=AC,CE=CD,∠BCA=∠ECD=60°,

∴ ∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE.

在△BCD和△ACE中,

∴ △BCD≌△ACE(SAS),故A成立.

∵ △BCD≌△ACE,∴ ∠DBC=∠CAE.

∵ ∠BCA=∠ECD=60°,∴ ∠ACD=60°.

在△BGC和△AFC中,

∴ △BGC≌△AFC,故B成立.

∵ △BCD≌△ACE,∴ ∠CDB=∠CEA,

在△DCG和△ECF中,

∴ △DCG≌△ECF,故C成立.

6. B 解析:∵ BC⊥AB,DE⊥BD,∴ ∠ABC=∠BDE.

又∵ CD=BC,∠ACB=∠DCE,∴ △EDC≌△ABC(ASA).

故选B.

7. D 解析:∵ AC⊥CD,∴ ∠1+∠2=90°.

∵ ∠B=90°,∴ ∠1+∠A=90°,∴ ∠A=∠2.

在△ABC和△CED中,

∴ △ABC≌△CED,故B、C选项正确,选项D错误.

∵ ∠2+∠D=90°,

∴ ∠A+∠D=90°,故A选项正确.

8. C 解析:因为∠C=∠D,∠B=∠E,所以点C与点D,点B与点E,点A与点F是对应顶点,AB的对应边应是FE,AC的对应边应是FD,根据AAS,当AC=FD时,有△ABC≌△FED.

9. D 解析:∵ AB=AC,∴ ∠ABC=∠ACB.

∵ BD平分∠ABC,CE平分∠ACB,

∴ ∠ABD=∠CBD=∠ACE=∠BCE.

∴ ①△BCD≌△CBE(ASA).

由①可得CE=BD, BE=CD,∴ AB-BE=AC-DC,即AE=AD.

又∠A=∠A,∴ ③△BDA≌△CEA (SAS).

又∠EOB=∠DOC,所以④△BOE≌△COD(AAS).故选D.

10. C 解析:A.∵ ∥ ,∴ ∠ =∠ .

∵ ∥ ∴ ∠ =∠ .

∵ ,∴ △ ≌△ ,故本选项可以证出全等.

B.∵ =,∠ =∠ ,

∴ △ ≌△ ,故本选项可以证出全等.

C.由∠ =∠ 证不出△ ≌△ ,故本选项不可以证出全等.

D.∵ ∠ =∠ ,∠ =∠ , ,

∴ △ ≌△ ,故本选项可以证出全等.故选C.

11. BC=EF或∠BAC=∠EDF或∠C=∠F或AC∥DF等 解析:由BD=AE,可得AB=DE.由BC∥EF,可得∠B=∠E.要使△ABC≌△DEF,需添加的一个条件是BC=EF或∠BAC=∠EDF或∠C=∠F或AC∥DF等.

12.

△△

13. 135° 解析:观察图形可知:△ABC≌△BDE,

∴ ∠1=∠DBE.

又∵ ∠DBE+∠3=90°,∴ ∠1+∠3=90°.

∵ ∠2=45°,∴ ∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.

14. 60 解析:∵ △ABC是等边三角形,

∴ ∠ABD=∠C,AB=BC.

∵ BD=CE,∴ △ABD≌△BCE,∴ ∠BAD=∠CBE.

∵ ∠ABE+∠EBC=60°,∴ ∠ABE+∠BAD=60°,

∴ ∠APE=∠ABE+∠BAD=60°.

15. 55° 解析:在△ABD与△ACE中,

∵ ∠1+∠CAD=∠CAE +∠CAD,∴ ∠1=∠CAE.

又∵ AB=AC,AD=AE,

∴ △ABD ≌△ACE(SAS).∴ ∠2=∠ABD.

∵ ∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°,

∴ ∠3=55°.

16. 3 解析:由∠C=90°,AD平分∠CAB,作DE⊥AB于E,

所以D点到直线AB的距离是DE的长.

由角平分线的性质可知DE=DC.

又BC=8 cm,BD=5 cm,所以DE=DC=3 cm.

所以点D到直线AB的距离是3 cm.

17. 31.5 解析:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA.

∵ OB,OC分别平分∠ABC和∠ACB,OD⊥BC,

∴ OD=OE=OF.

=×OD×BC+×OE×AC+×OF×AB

=×OD×(BC+AC+AB)

=×3×21=31.5.

18. 15 解析:因为CD平分∠ACB,∠A=90°,DE⊥BC,

所以∠ACD=∠ECD,CD=CD,∠DAC=∠DEC,所以△ADC≌△EDC,

所以AD=DE, AC=EC,所以△DEB的周长=BD+DE+BE=BD+AD+BE.

又因为AB=AC,所以△DEB的周长=AB+BE=AC+BE=EC+BE=BC=15 cm.

19. 分析:∠ADB与∠FCE分别是△ADB与△FCE的两个内角,若能证明这两个三角形全等,则可证明∠ADB=∠FCE.这两个三角形中已具备一边(AB=FE)和一角(∠B=∠E)的条件,若能证明BD=EC,利用“SAS”即可证明这两个三角形全等,所需条件根据线段的和差关系容易得出.

证明:∵ BC=DE,

∴ BC+CD=DE+CD,即BD=CE.

在△ABD与△FEC中,

∴ △ABD≌△FEC(SAS).

∴ .

20. 分析:由△ABC≌△ADE,可得∠DAE=∠BAC=(∠EAB-∠CAD),根据三角形外角的性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角的性质可得∠DGB=∠DFB -∠D,即可得∠DGB的度数.

解:∵ △ABC≌△ADE,

∴ ∠DAE=∠BAC=(∠EAB-∠CAD)=.

∴ ∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,

∠DGB=∠DFB-∠D=90°-25°=65°.

21. 分析:首先根据角之间的关系推出 再根据边角边定理,证明△ ≌

△ ,最后根据全等三角形的性质定理,得知 .根据角的转换可求出.

证明:(1)因为 ,

所以 .

又因为

在△ 与△ 中,

所以△ ≌△ . 所以 .

(2)因为

△ ≌△ ,

所以

22. 分析:(1)根据角平分线的性质“角平分线上的点到角两边的距离相等”可得点D到AB的距离=点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB.

(2)利用角平分线的性质证明△ADC≌△ADE,∴ AC=AE,再将线段AB进行转化.

证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.

又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),

∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,

∴ △ADC≌△ADE,∴ AC=AE,

∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.

23. 证明:∵ DB⊥AC ,CE⊥AB,∴ ∠AEC=∠ADB=90°.

在△ACE与△ABD中,

∴ △ACE≌△ABD (AAS),∴ AD=AE.

在Rt△AEF与Rt△ADF中,

∴ Rt△AEF≌Rt△ADF(HL),

∴ ∠EAF=∠DAF,∴ AF平分∠BAC.

24.⑴证明:因为BF⊥CE于点F,

所以∠CFB=90°,

所以∠ECB+∠CBF=90°.

又因为∠ACE +∠ECB=90°,所以∠ACE =∠CBF .

因为AC=BC, ∠ACB=90°,所以∠A=∠CBA=45°.

又因为点D是AB的中点,所以∠DCB=45°.

因为∠ACE =∠CBF,∠DCB=∠A,AC=BC,

所以△CAE≌△BCG,所以AE=CG.

(2)解:BE=CM.

证明:∵ ∠ACB=90°,∴ ∠ACH +∠BCF=90°.

∵ CH⊥AM,即∠CHA=90°,

∴ ∠ACH +∠CAH=90°,∴ ∠BCF=∠CAH.

∵ CD为等腰直角三角形斜边上的中线,

∴ CD=AD.∴ ∠ACD=45°.

在△CAM与△BCE中,BC=CA ,∠BCF=∠CAH,∠CBE=∠ACM,

∴ △CAM ≌△BCE,∴ BE=CM.

小编为大家提供的沪科版八年级数学上第14章全等三角形检测题,大家仔细阅读了吗?最后祝同学们学习进步。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限