2016-09-28 收藏
数学是一种应用非常广泛的学科。查字典数学网小编为大家准备了这篇沪科版八年级上册数学13章测试,希望对同学们有所帮助。
2016沪科版八年级上册数学13章测试及答案
一、选择题(每小题3分,共30分)
1.(2015•福建泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( )
A.11 B.5 C.2 D.1
2. 等腰三角形的两边长分别为5 cm和10 cm,则此三角形的周长是( )
A.15 cm B.20 cm C.25 cm D.20 cm或25 cm
3. 命题:① 邻补角互补;② 对顶角相等;③ 同旁内角互补;④ 两点之间线段最短;
⑤直线都相等.其中真命题有( )
A. 1个 B. 2个 C. 3个 D. 4个
4.已知△ABC中,∠ABC和∠ACB的平分线交于点O,则∠BOC一定( )
A.小于直角 B.等于直角 C.大于直角D.不能确定
5.(2015•福建漳州中考)下列命题中,是假命题的是( )
A.对顶角相等
B.同旁内角互补
C.两点确定一条直线
D.角平分线上的点到这个角的两边的距离相等
6. 对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( )
A.∠1=50°,∠2=40° B.∠1=50°,∠2=50°
C.∠1=∠2=45° D.∠1=40°,∠2=40°
7. 不一定在三角形内部的线段是( )
A.三角形的角平分线 B.三角形的中线
C.三角形的高 D.以上皆不对
8. 如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F
的度数是( )
A. 180° B.360° C.540° D.720°
9. 下面关于基本事实和定理的联系说法不正确的是()
A.基本事实和定理都是真命题
B.基本事实就是定理,定理也是基本事实
C.基本事实和定理都可以作为推理论证的依据
D.基本事实的正确性不需证明,定理的正确性需证明
10.(2015•山东滨州)在△ABC中,∠A∶∠B∶∠C=3∶4∶5,则∠C等于( )
A.45° B.60° C.75° D.90°
二、填空题(每小题3分,共24分)
11.(2015•四川南充中考)如图,点D在△ABC边BC的延长线上, CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是_____度.
第11题图
12.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2= 度.
13.“两条直线被第三条直线所截,同位角相等”的条件是 ,
结论是 .
14.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .
15.设 为△ABC的三边长,则 .
16.如图所示,AB=29,BC=19,AD=20,CD=16,若AC= ,则 的取值范围为 .
17.如图所示,在△ABC中,∠ABC = ∠ACB,∠A = 40°,P是△ABC内一点,且∠1 = ∠2,则∠BPC=________.
18.“直角三角形有两个角是锐角”这个命题的逆命题是 ,它是一个 命题.
三、解答题(共46分)
19.(6分) 下列句子是命题吗?若是,把它改写成“如果……那么……”的形式,并写出它的逆命题,同时判断原命题和逆命题的真假.
(1)一个角的补角比这个角的余角大多少度?
(2)垂线段最短,对吗?
(3)等角的补角相等.
(4)两条直线相交只有一个交点.
(5)同旁内角互补.
(6)邻补角的角平分线互相垂直.
20.(6分)如图所示,在△ABC中,AB=AC,AC上的中线把三角形的周长分为24 cm和30 cm的两个部分,求三角形各边的长.
21.(6分)如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A= 时,求∠BPC的度数.
22.(6分)已知一个三角形有两边长均为,第三边长为 ,若该三角形的边长都为整数,试判断此三角形的形状.
23.(6分)如图所示,武汉有三个车站A、B、C成三角形,一辆公共汽车从B站前往到C站.
(1)当汽车运动到点D时,刚好BD=CD,连接线段AD,AD这条线段是什么线段?这样的线段在△ABC中有几条呢?此时有面积相等的三角形吗?
(2)汽车继续向前运动,当运动到点E时,发现∠BAE=∠CAE,那么AE这条线段是什么线段呢?在△ABC中,这样的线段又有几条呢?
(3)汽车继续向前运动,当运动到点F时,发现∠AFB=∠AFC=90°,则AF是什么线段?这样的线段在△ABC中有几条?
24.(8分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.
25.(8分)规定,满足(1)各边互不相等且均为整数,(2)最短边上的高与最长边上的高的比值为整数k,这样的三角形称为比高三角形,其中k叫做比高系数.根据规定解答下列问题:
(1)求周长为13的比高系数k的值;
(2)写出一个只有4个比高系数的比高三角形的周长.
第13章 三角形中的边角关系、命题与证明检测题参考答案
1.B 解析:根据三角形的三边关系,得64
所以边AC的长可能是5.
2.C 解析:因为三角形中任何两边的和大于第三边,所以腰长只能是10 cm,所以此三角形的周长是10+10+5=25(cm).故选C.
3.C 解析:①②④是真命题;对于③,只有两条平行直线被第三条直线截得的同旁内角才互补;对于⑤,直线不能测量长度,所以也不存在两条直线相等的说法,故选C.
4.C 解析:因为在△ABC中,∠ABC+∠ACB<180°,所以所以
∠BOC>90°.故选C.
5.B 解析:选项B错误,应为两直线平行,同旁内角互补;其余选项都正确.
6.C 解析:当∠1=∠2=45°,∠1+∠2也等于90°.故选C.
7. C 解析:因为三角形的中线、角平分线都在三角形的内部,而钝角三角形的高有的在三角形的外部,所以答案选C.
8. B 解析:三角形的外角和为360°.
9. B 解析:根据基本事实和定理的定义,可知A,C,D是正确的,B是错误的.故选B.
10. C 解析:∵ ∠A∶∠B∶∠C=3∶4∶5,所以∠C=180°×=180° =75°.
即∠C等于75°.
11.60 解析:∵ 是△ABC的一个外角,∴ ,
∵ CE平分∠ACD, ∴ .
12.270 解析:根据题意可知∠1+∠2=180°+180°-90°=360°-90°=270°.
13.两条直线被第三条直线所截 同位角相等
14.120°或20° 解析:设两个角分别是 ,4 ,①当 是底角时,根据三角形的内角和定理,得 =180°,解得 =30°,4 =120°,即底角为30°,顶角为120°;
②当 是顶角时,则 =180°,解得 =20°,从而得到顶角为20°,底角为80°.
所以该三角形的顶角为120°或20°.
15. 解析:因为 为△ABC的三边长,
所以 , ,
所以原式=
16.10<<36 解析:在△ABC中,AB-BC
在△ADC中,AD-DC
17.110° 解析:因为∠A=40°,∠ABC = ∠ACB,
所以∠ABC = ∠ACB=(180°-40°)=70°.
又因为∠1=∠2,∠1+∠PCB=70°,所以∠2+∠PCB=70°,
所以∠BPC=180°-70°=110°.
18.有两个角是锐角的三角形是直角三角形 假 解析:“直角三角形有两个角是锐角”这个命题的逆命题是“有两个角是锐角的三角形是直角三角形”,假设三角形一个角是30°,一个角是45°,有两个角是锐角,但这个三角形不是直角三角形.故是假命题.
19.分析:根据命题的定义先判断出哪些是命题,再把命题的题设写在“如果”后面,结论写在“那么”后面.再将题设与结论互换写出它的逆命题.
解:对一件事情做出判断的句子是命题,因为(1)(2)是问句,所以(1)(2)不是命题,其余4个都是命题.
(3)如果两个角相等,那么它们的补角相等,真命题;
逆命题:如果两个角的补角相等,那么这两个角相等,真命题.
(4)如果两条直线相交,那么它们只有一个交点,真命题;
逆命题:如果两条直线只有一个交点,那么这两条直线相交,真命题.
(5)如果两个角是同旁内角,那么它们互补,假命题;
逆命题:如果两个角互补,那么这两个角是同旁内角,假命题.
(6)如果两条射线是邻补角的角平分线,那么它们互相垂直,真命题;
逆命题:如果两条射线垂直,那么这两条射线是邻补角的角平分线,假命题.
20.分析:因为BD是中线,所以AD=DC,造成所分两部分不等的原因就在于腰与底的不等,故应分情况讨论.
解:设AB=AC=2 ,则AD=CD=.
(1)当AB+AD=30,BC+CD=24时,有2 =30,
∴ =10,2 =20,BC=24-10=14,
三边分别为20 cm,20 cm,14 cm.
(2)当AB+AD=24,BC+CD=30时,有=24,
∴ =8, ,BC=30-8=22,
三边分别为16 cm,16 cm,22 cm.
21.解:(1)∵ BP和CP分别是∠B与∠C的平分线,∴ ∠1=∠2,∠3=∠4.
∴ ∠2+∠4=(180°-∠A)=90°-∠A,∴ ∠BPC =90°+∠A.
∴ 当∠A=70°时,∠BPC =90°+35°=125°.
(2)当∠A=112°时,∠BPC=90°+56°=146°.
(3)当∠A= 时,∠BPC=90°+ .
22.分析:已知三角形的三边长,根据三角形的三边关系,列出不等式,再求解.
解:根据三角形的三边关系,得
<<,
0<<6- ,
0<<.
因为3﹣ 是正整数,所以 =1.
所以三角形的三边长分别是2,2,2.
因此,该三角形是等边三角形.
23. 分析:(1)由于BD=CD,则点D是BC的中点,AD是中线,三角形的中线把三角形分成两个面积相等的三角形;
(2)由于∠BAE=∠CAE,所以AE是三角形的角平分线;
(3)由于∠AFB=∠AFC=90°,则AF是三角形的高线.
解:(1)AD是△ABC中BC边上的中线,△ABC中有三条中线.此时△ABD与△ADC的面积相等.
(2)AE是△ABC中∠BAC的平分线,△ABC中角平分线有三条.
(3)AF是△ABC中BC边上的高线,△ABC中有三条高线.
24.分析:灵活运用垂直的定义,注意由垂直可得90°角,由90°角可得垂直,结合平行线的判定和性质,只要证得∠ADC=90°,即可得CD⊥AB.
证明:∵ DG⊥BC,AC⊥BC(已知),
∴ ∠DGB=∠ACB=90°(垂直定义),
∴ DG∥AC(同位角相等,两直线平行).
∴ ∠2=∠ACD(两直线平行,内错角相等).
∵ ∠1=∠2(已知),
∴ ∠1=∠ACD(等量代换),
∴ EF∥CD(同位角相等,两直线平行).
∴ ∠AEF=∠ADC(两直线平行,同位角相等).
∵ EF⊥AB(已知),∴ ∠AEF=90°(垂直定义),
∴ ∠ADC=90°(等量代换).
∴ CD⊥AB(垂直定义).
25.分析:(1)根据定义结合三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析;
(2)根据比高三角形的知识点结合三角形三边关系的知识点,进行判断只有四个比高系数的三角形的周长.
解:(1)根据定义和三角形的三边关系,知此三角形的三边是2,5,6或3,4,6,则k=3或2.
(2)如周长为37的三角形,只有四个比高系数,当比高系数为2时,这个三角形三边分别为9,10,18,当比高系数为3时,这个三角形三边分别为6,13,18,当比高系数为6时,这个三角形三边长分别为3,16,18,当比高系数为9时,这个三角形三边分别为2,17,18.
小编为大家提供的沪科版八年级上册数学13章测试,大家仔细阅读了吗?最后祝同学们学习进步。
二上:《用乘法的意义解决问题》教学教案
有关平均数的知识点归纳:八年级上册数学第六章
八年级上册数学知识点归纳:一次函数的表达式
初一上册数学同步练习题精选:第四单元
精选初二上册数学第五单元知识点:二元一次方程组
新人教版三年级数学上册第四、五单元测试卷
有关平均数的知识点总结:精选八年级上册数学第五章
2015年初一上册数学第四单元课后检测题
15-16学年初一上册数学练习:第四单元
15-16学年八年级上册数学知识点整理:二元一次方程组
初二年级上册数学第四单元知识:列分式方程基本步骤
精选初一上册数学第三单元课后检测题:平方根
15-16学年初一数学第三单元同步测试题:实数
角的种类知识点总结:七年级上册数学(第四单元)
二上:《角的初步认识》教案
初二上册数学第四单元知识点复习:分式的约分
八年级上册数学第四单元课后知识点之分式方程
二上:《量一量,比一比》教学教案
七年级上册数学第四单元训练试题:代数式
新人教版版初二上册数学第五单元知识点:多项式与多项式相乘
人教版五年级数学上册期末试卷题
初二年级数学上册第四章知识点:解分式方程的基本步骤
《代数式》七年级上册数学第四单元课后训练题
人教版五年级数学上册期末模拟试卷
人教版四年级上册数学期末竞赛考试卷
《实数》七年级上册数学第三单元同步测试题
必备的八年级上册数学知识点归纳:数据的离散程度
二上:《长度单位》重难点突破
六年级数学上册《圆的周长》检测试卷
八年级上册数学第五单元知识点:整式乘法法则
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |