2016-09-13
收藏
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma)。接下来我们一起来练习八年级上册数学第一章分式单元试题。
八年级上册数学第一章分式单元试题附答案(新湘教版)
类型之一 分式的概念
1.若分式2a+1有意义,则a的取值范围是 ()
A.a=0 B.a=1
C.a≠-1 D.a≠0
2.当a ________时,分式1a+2有意义.
3. 若式子2x-1-1的值为零,则x=________.
4.求出使分式|x|-3(x+2)(x-3)的值为0的x的值.
类型之二 分式的基本性质
5.a,b为有理数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1,则P____Q(填“>”、“<”或“=”).
类型之三 分式的计算与化简
6.化简1x-3-x+1x2-1(x-3)的结果是 ()
A.2 B.2x-1
C.2x-3 D.x-4x-1
7.化简x(x-1)2-1(x-1)2的结果是______________.
8.化简:1+1x÷2x-1+x2x.
9.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的值代入计算.
10.先化简,后求值:x-1x+2•x2-4x2-2x+1÷1x2-1,其中x2-x=0.
类型之四 整数指数幂
11.计算:(1)(-1)2 013-|-7|+9×(7-π)0+15-1;
(2)(m3n)-2•(2m-2n-3)-2÷(m-1n)3.
类型之五 科学记数法
12.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 096 3贝克/立方米.数据“0.000 096 3”用科学记数法可表示为__________________ .
类型之六 解分式方程
13.分式方程12x2-9-2x-3=1x+3的解为 ()
A.x=3 B.x=-3
C.无解 D.x=3或-3
14.解方程:2x-1=1x-2.
15.解方程:23x-1-1=36x-2.
类型之七 分式方程的应用
16.李明到离家2.1千米的学校参加九年级联欢会, 到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行匀速回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校,已知李明骑自行车的速度是步行速度的3倍 ,且李明骑自行车到学校比 他从学校步行到家少用了20分钟.
(1)李明步行的速度是多少米/分?
(2)李明能否在联欢会开始前赶到学校?
17.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求:甲、乙两个工厂每天分别能加工多少件新产品.
答案解析
1.C 2.≠-2 3.3
4.【解析】 要使分式的值为0,必须使分式的分子为0,且分母不为0,即|x|-3=0且(x+2)(x-3)≠0.
解:要使已知的分式的值为0,x应满足|x|-3=0且(x+2)•(x-3)≠0.由|x|-3=0,得x=3或x=-3,检验知:当x=3时,(x+2)(x-3)=0,当x=-3 时,(x+2)(x-3)≠0,所以满足条件的x的值是x=-3.
5.=
6.B 【解析】 原式=1x-3-1x-1(x-3)=1-x-3x-1=x-1x-1-x-3x-1=2x-1.
7.1x-1
8.解:原式=x+1x÷x2-1x=x+1x×x(x+1)(x-1)=1x-1.
9.解:原式=1-a-1a×a(a+2)(a+1)(a-1)=1-a+2a+1=-1a+1.
当a=3时,原式=-13+1=-14.(a的取值为0,±1,-2外的任意值)
10.【解析】 本题是一道含有分式乘除混合运算的分式运算,先化简,然后把化简后的最简结果与已知条件相结合,不难发现计算方法.
解:原式=x-1x+2•(x+2)(x-2)(x-1)2•(x+1)(x-1)1=(x-2)•(x+1)=x2-x-2.
当x2-x=0时,原式=0-2=-2.
11.【解析】 先算乘方,再算乘除.
解:(1)原式=-1-7+3+5=0;
(2)原式=m-6n-2•2-2m4n6÷m-3n3
=14m-6+4-(-3)n-2+6-3=14mn.
12.9.63×10-5
13.C 【解析】 方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.
检验:当x=3时,(x+3)(x-3)=0,
即x=3不是原分式方程的解,
故原方程无解.
14.解: 方程两边都乘(x-1)(x-2),得2( x-2)=x-1,
去括号,得2x-4=x-1,
移项,得x=3.
经检验,x=3是原方程的解,
所以原分式方程的解是x=3.
15.解:方程两边同时乘6x-2,得4-(6x-2)=3,
化 简,得-6x=-3,解得x=12.
检验:当x=12时,6x-2≠0,
所以x=12是原方程的解.
16.【解析】 (1)相等关系:从学校步行回家所用的时间-从家赶往学校所用的时间=20分钟;(2)比较回家取道具所用总时间与42分的大小.
解:(1)设李明步行的速度是x米/分,则他骑自行车的速度是3x米/分,
根据题意,得2 100x-2 1003x=20,解得x=70,
经检验,x=70是原方程的解,
所以李明步行的速度是70米/分.
(2)因为2 10070+2 1003×70+1=41(分)<42(分),
所以李明能在联欢会开始前赶到学校.
17.【解析】 本题的等量关系为:甲工厂单独加工完成这批产品所用天数-乙工厂单独加工完成这批产品所用天数=10;乙工厂每天加工的数量=甲工厂每天加工的数量×1.5,则若设甲 工厂每天加工x件产品,那么乙工厂每天加工1.5x件产品,根据题意可分别表示出两个工厂单独加工完成这批产品所用天数,进而列出方程求解.
解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,
依题意,得1 200x-1 2001.5x=10,
解得x=40,
经检验x=40是原方程的 根,
所以1.5x=60.
答:甲工厂每天加 工40件产品,乙工厂每天加工60件产品.
八年级上册数学第一章分式单元试题到这里就结束了,希望能帮助大家提高学习成绩。
高考复习11月月考数学试卷
高考中央民大附中第一学期高三年级考试数学
各地高考模拟创新试题之五——解析几何部分
高考潍坊市高三年级统一考试数学(理)
高考复习北京四中数学第三次统测(理科)
全国重点中学高考模拟数学试卷
高考复习高三年级十月份考试题数学试卷(理)
湖北省重点中学高考数学模拟试题
高考襄樊市高三调研测试文科数学
高考复习10月统一考试
高考复习第二轮专题复习复数的加法与减法
高考复习第三轮数学综合测试
高考复习第二次质量检查数学试卷
高考复习3月月考数学试卷(理科)
高考天津市和平区高三调研试卷数学
高考复习福建省福州三中高三年级阶段测试
高考复习第一学期高三年级十一月份数学调研试卷
湖北省黄石二中高考模拟试题
江苏省前黄高级中学高考数学模拟试卷
高考复习第二次月考数学试题
高三数学高考基础知识详解
高考复习成都市高中毕业班摸底测试数学理科
高考复习成都市高中毕业班摸底测试数学文科
高考天津市河西区第一学期高三年级统一调研模拟试卷数学
高考复习第一次诊断性检测题(数学文科)
高考复习10月月考试卷
杭州市高考科目第一次教学质量检测数学试卷(理科)
宣威六中高考第一轮总复习同步试卷
高考复习期中考试数学
高考复习第二轮专题复习复合函数的导数
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |