八年级数学初二第二单元同步试卷含答案(苏科版)_题型归纳 - 查字典数学网
数学八年级数学初二第二单元...
首页>学习园地>题型归纳>八年级数学...

八年级数学初二第二单元同步试卷含答案(苏科版)

2016-09-13 收藏

数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。接下来我们一起来练习八年级数学初二第二单元同步试卷含答案。

八年级数学初二第二单元同步试卷含答案(苏科版)

一、选择题(共14小题)

1.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()

A.有且只有1个

B.有且只有2个

C.组成∠E的角平分线

D.组成∠E的角平分线所在的直线(E点除外)

2.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()

A.10 B.7 C.5 D.4

3.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()

A. B.2 C.3 D. +2

4.如图,在边长为 的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()

A. B. C. D.1

5.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()

A.6 B.5 C.4 D.3

6.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()

A.2 B. C. D.

7.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,AC=3,BC=4,则CD的长是()

A.1 B. C. D.2

8.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:

①OA=OD;

②AD⊥EF;

③当∠A=90°时,四边形AEDF是正方形;

④AE+DF=AF+DE.

其中正确的是()

A.②③ B.②④ C.①③④ D.②③④

9.如图,AD是△ABC的角平分线,则AB:AC等于()

A.BD:CD B.AD:CD C.BC:AD D.BC:AC

10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于 MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()

①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.

A.1 B.2 C.3 D.4

11.如图,三角形ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:

①∠AFE=∠AEF;

②AD垂直平分EF;

③ ;

④EF一定平行BC.

其中正确的是()

A.①②③ B.②③④ C.①③④ D.①②③④

12.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()

A.3 B.4 C.6 D.5

13.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()

A.∠BAC=70° B.∠DOC=90° C.∠BDC=35° D.∠DAC=55°

14.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()

A. B. C. D.

二、填空题(共13小题)

15.如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.

16.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.

17.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是.

18.如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的距离为.

19.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.

20.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,那么点D到BC的距离是.

21.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为.

22.如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=°.

23.在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.

24.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为.

25.如图,BD是∠ABC的平分线,P为BD上的一点,PE⊥BA于点E,PE=4cm,则点P到边BC的距离为cm.

26.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.

27.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若AD=4,CD=2,则AB的长是.

三、解答题(共3小题)

28.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.

29.如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.

(1)求证:点O在∠BAC的平分线上;

(2)若AC=5,BC=12,求OE的长.

30.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.

(1)求DE的长;

(2)求△ADB的面积.

2016年苏科版八年级数学上册同步试卷:2.4 线段、角的轴对称性(1)

参考答案与试题解析

一、选择题(共14小题)

1.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()

A.有且只有1个

B.有且只有2个

C.组成∠E的角平分线

D.组成∠E的角平分线所在的直线(E点除外)

【考点】角平分线的性质.

【分析】根据角平分线的性质分析,作∠E的平分线,点P到AB和CD的距离相等,即可得到S△PAB=S△PCD.

【解答】解:作∠E的平分线,

可得点P到AB和CD的距离相等,

因为AB=CD,

所以此时点P满足S△PAB=S△PCD.

故选D.

【点评】此题考查角平分线的性质,关键是根据AB=CD和三角形等底作出等高即可.

2.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()

A.10 B.7 C.5 D.4

【考点】角平分线的性质.

【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.

【解答】解:作EF⊥BC于F,

∵BE平分∠ABC,ED⊥AB,EF⊥BC,

∴EF=DE=2,

∴S△BCE= BC•EF= ×5×2=5,

故选C.

【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.

3.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()

A. B.2 C.3 D. +2

【考点】角平分线的性质;含30度角的直角三角形.

【分析】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.

【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,

∴CD=DE=1,

又∵直角△BDE中,∠B=30°,

∴BD=2DE=2,

∴BC=CD+BD=1+2=3.

故选C.

【点评】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.

4.如图,在边长为 的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()

A. B. C. D.1

【考点】角平分线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理.

【分析】根据△ABC为等边三角形,BP平分∠ABC,得到∠PBC=30°,利用PC⊥BC,所以∠PCB=90°,在Rt△PCB中, =1,即可解答.

【解答】解:∵△ABC为等边三角形,BP平分∠ABC,

∴∠PBC= =30°,

∵PC⊥BC,

∴∠PCB=90°,

在Rt△PCB中, =1,

∴点P到边AB所在直线的距离为1,

故选:D.

【点评】本题考查了等边三角形的性质、角平分线的性质、利用三角函数求值,解决本题的关键是等边三角形的性质.

5.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()

A.6 B.5 C.4 D.3

【考点】角平分线的性质.

【分析】过点P作PE⊥OB于点E,根据角平分线上的点到角的两边的距离相等可得PE=PD,从而得解.

【解答】解:如图,

过点P作PE⊥OB于点E,

∵OC是∠AOB的平分线,PD⊥OA于D,

∴PE=PD,

∵PD=6,

∴PE=6,

即点P到OB的距离是6.

故选:A.

【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,比较简单,熟记性质是解题的关键.

6.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()

A.2 B. C. D.

【考点】角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.

【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.

【解答】解:∵OP平分∠AOB,∠AOB=60°,

∴∠AOP=∠COP=30°,

∵CP∥OA,

∴∠AOP=∠CPO,

∴∠COP=∠CPO,

∴OC=CP=2,

∵∠PCE=∠AOB=60°,PE⊥OB,

∴∠CPE=30°,

∴CE= CP=1,

∴PE= = ,

∴OP=2PE=2 ,

∵PD⊥OA,点M是OP的中点,

∴DM= OP= .

故选:C.

【点评】此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.

7.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,AC=3,BC=4,则CD的长是()

A.1 B. C. D.2

【考点】角平分线的性质;三角形的面积;勾股定理.

【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,利用勾股定理列式求出AB,再根据△ABC的面积公式列出方程求解即可.

【解答】解:如图,过点D作DE⊥AB于E,

∵∠C=90°,AD是△ABC的角平分线,

∴DE=CD,

由勾股定理得,AB= = =5,

S△ABC= AB•DE+ AC•CD= AC•BC,

即 ×5•CD+ ×3•CD= ×3×4,

解得CD= .

故选C.

【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,勾股定理,熟记性质并根据三角形的面积列出方程是解题的关键.

8.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:

①OA=OD;

②AD⊥EF;

③当∠A=90°时,四边形AEDF是正方形;

④AE+DF=AF+DE.

其中正确的是()

A.②③ B.②④ C.①③④ D.②③④

【考点】角平分线的性质;全等三角形的判定与性质;正方形的判定.

【专题】压轴题.

【分析】①如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,所以①不正确.

②首先根据全等三角形的判定方法,判断出△AED≌△AFD,AE=AF,DE=DF;然后根据全等三角形的判定方法,判断出△AE0≌△AFO,即可判断出AD⊥EF.

③首先判断出当∠A=90°时,四边形AEDF的四个角都是直角,四边形AEDF是矩形,然后根据DE=DF,判断出四边形AEDF是正方形即可.

④根据△AED≌△AFD,判断出AE=AF,DE=DF,即可判断出AE+DF=AF+DE成立,据此解答即可.

【解答】解:如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,

∴①不正确;

∵AD是△ABC的角平分线,

∴∠EAD∠FAD,

在△AED和△AFD中,

∴△AED≌△AFD(AAS),

∴AE=AF,DE=DF,

∴AE+DF=AF+DE,

∴④正确;

在△AEO和△AFO中,

∴△AE0≌△AF0(SAS),

∴EO=FO,

又∵AE=AF,

∴AO是EF的中垂线,

∴AD⊥EF,

∴②正确;

∵当∠A=90°时,四边形AEDF的四个角都是直角,

∴四边形AEDF是矩形,

又∵DE=DF,

∴四边形AEDF是正方形,

∴③正确.

综上,可得

正确的是:②③④.

故选:D.

【点评】(1)此题主要考查了三角形的角平分线的性质和应用,以及直角三角形的性质和应用,要熟练掌握.

(2)此题还考查了全等三角形的判定和应用,要熟练掌握.

(3)此题还考查了矩形、正方形的性质和应用,要熟练掌握.

9.如图,AD是△ABC的角平分线,则AB:AC等于()

A.BD:CD B.AD:CD C.BC:AD D.BC:AC

【考点】角平分线的性质.

【专题】压轴题.

【分析】先过点B作BE∥AC交AD延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可有 = ,而利用AD时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.

【解答】解:如图

过点B作BE∥AC交AD延长线于点E,

∵BE∥AC,

∴∠DBE=∠C,∠E=∠CAD,

∴△BDE∽△CDA,

∴ = ,

又∵AD是角平分线,

∴∠E=∠DAC=∠BAD,

∴BE=AB,

∴ = ,

∴AB:AC=BD:CD.

故选:A.

【点评】此题考查了角平分线的定义、相似三角形的判定和性质、平行线分线段成比例定理的推论.关键是作平行线.

10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于 MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()

①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.

A.1 B.2 C.3 D.4

【考点】角平分线的性质;线段垂直平分线的性质;作图—基本作图.

【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;

②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;

③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;

④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.

【解答】解:①根据作图的过程可知,AD是∠BAC的平分线.

故①正确;

②如图,∵在△ABC中,∠C=90°,∠B=30°,

∴∠CAB=60°.

又∵AD是∠BAC的平分线,

∴∠1=∠2= ∠CAB=30°,

∴∠3=90°﹣∠2=60°,即∠ADC=60°.

故②正确;

③∵∠1=∠B=30°,

∴AD=BD,

∴点D在AB的中垂线上.

故③正确;

④∵如图,在直角△ACD中,∠2=30°,

∴CD= AD,

∴BC=CD+BD= AD+AD= AD,S△DAC= AC•CD= AC•AD.

∴S△ABC= AC•BC= AC• AD= AC•AD,

∴S△DAC:S△ABC= AC•AD: AC•AD=1:3.

故④正确.

综上所述,正确的结论是:①②③④,共有4个.

故选D.

【点评】本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.

11.如图,三角形ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:

①∠AFE=∠AEF;

②AD垂直平分EF;

③ ;

④EF一定平行BC.

其中正确的是()

A.①②③ B.②③④ C.①③④ D.①②③④

【考点】角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.

【分析】由三角形ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,根据角平分线的性质,可得DE=DF,∠ADE=∠ADF,又由角平分线的性质,可得AF=AE,继而证得①∠AFE=∠AEF;又由线段垂直平分线的判定,可得②AD垂直平分EF;然后利用三角形的面积公式求解即可得③ .

【解答】解:①∵三角形ABC中,∠A的平分线交BC于点D,DE⊥AC,DF⊥AB,

∴∠ADE=∠ADF,DF=DE,

∴AF=AE,

∴∠AFE=∠AEF,故正确;

②∵DF=DE,AF=AE,

∴点D在EF的垂直平分线上,点A在EF的垂直平分线上,

∴AD垂直平分EF,故正确;

③∵S△BFD= BF•DF,S△CDE= CE•DE,DF=DE,

∴ ;故正确;

④∵∠EFD不一定等于∠BDF,

∴EF不一定平行BC.故错误.

故选A.

【点评】此题考查了角平分线的性质、线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.

12.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()

A.3 B.4 C.6 D.5

【考点】角平分线的性质.

【专题】几何图形问题.

【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.

【解答】解:如图,过点D作DF⊥AC于F,

∵AD是△ABC中∠BAC的角平分线,DE⊥AB,

∴DE=DF,

由图可知,S△ABC=S△ABD+S△ACD,

∴ ×4×2+ ×AC×2=7,

解得AC=3.

故选:A.

【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.

13.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()

A.∠BAC=70° B.∠DOC=90° C.∠BDC=35° D.∠DAC=55°

【考点】角平分线的性质;三角形内角和定理.

【专题】计算题.

【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.

【解答】解:∵∠ABC=50°,∠ACB=60°,

∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,

故A选项正确,

∵BD平分∠ABC,

∴∠ABO= ∠ABC= ×50°=25°,

在△ABO中,

∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,

∴∠DOC=∠AOB=85°,

故B选项错误;

∵CD平分∠ACE,

∴∠ACD= (180°﹣60°)=60°,

∴∠BDC=180°﹣85°﹣60°=35°,

故C选项正确;

∵BD、CD分别是∠ABC和∠ACE的平分线,

∴AD是△ABC的外角平分线,

∴∠DAC= (180°﹣70°)=55°,

故D选项正确.

故选:B.

【点评】本题考查了角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题的关键.

14.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()

A. B. C. D.

【考点】角平分线的性质;三角形的面积;勾股定理.

【专题】压轴题.

【分析】根据勾股定理列式求出BC,再利用三角形的面积求出点A到BC上的高,根据角平分线上的点到角的两边的距离相等可得点D到AB、AC上的距离相等,然后利用三角形的面积求出点D到AB的长,再利用△ABD的面积列式计算即可得解.

【解答】解:∵∠BAC=90°,AB=3,AC=4,

∴BC= = =5,

∴BC边上的高=3×4÷5= ,

∵AD平分∠BAC,

∴点D到AB、AC上的距离相等,设为h,

则S△ABC= ×3h+ ×4h= ×5× ,

解得h= ,

S△ABD= ×3× = BD• ,

解得BD= .

故选A.

【点评】本题考查了角平分线的性质,三角形的面积,勾股定理,利用三角形的面积分别求出相应的高是解题的关键.

二、填空题(共13小题)

15.如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是 .

【考点】角平分线的性质.

【分析】求出∠ABC,求出∠DBC,根据含30度角的直角三角形性质求出BC,CD,问题即可求出.

【解答】解:∵∠C=90°,∠A=30°,

∴∠ABC=180°﹣30°﹣90°=60°,

∵BD是∠ABC的平分线,

∴∠DBC= ∠ABC=30°,

∴BC= AB=3,

∴CD=BC•tan30°=3× = ,

∵BD是∠ABC的平分线,

又∵角平线上点到角两边距离相等,

∴点D到AB的距离=CD= ,

故答案为: .

【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.

16.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是 4:3 .

【考点】角平分线的性质.

【分析】估计角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.

【解答】解:∵AD是△ABC的角平分线,

∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,

∴h1=h2,

∴△ABD与△ACD的面积之比=AB:AC=4:3,

故答案为4:3.

【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.

17.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是 3 .

【考点】角平分线的性质.

【分析】根据角平分线上的点到角的两边的距离相等可得DE=DC即可得解.

【解答】解:作DE⊥AB于E,

∵AD是∠CAB的角平分线,∠C=90°,

∴DE=DC,

∵DC=3,

∴DE=3,

即点D到AB的距离DE=3.

故答案为:3.

【点评】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.

18.如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的距离为 3 .

【考点】角平分线的性质;菱形的性质.

【专题】计算题.

【分析】作PF⊥AD于D,如图,根据菱形的性质得AC平分∠BAD,然后根据角平分线的性质得PF=PE=3.

【解答】解:作PF⊥AD于D,如图,

∵四边形ABCD为菱形,

∴AC平分∠BAD,

∵PE⊥AB,PF⊥AD,

∴PF=PE=3,

即点P到AD的距离为3.

故答案为:3.

【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了菱形的性质.

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限