2016-08-15
收藏
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目。解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题。
“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。
解决动点问题的关键是“动中求静”。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
考点一:建立动点问题的函数解析式(或函数图像)
函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容。动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系。
考点二:动态几何型题目
点动、线动、形动构成的问题称之为动态几何问题。 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题。 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力。
动态几何特点--问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
考点三:双动点问题
动态问题是近几年来中考数学的热点题型。这类试题信息量大,其中以灵活多变而着称的双动点问题更成为中考试题的热点中的热点,双动点问题对同学们获取信息和处理信息的能力要求更高高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。
2016年中考数学第一轮辅导:等腰三角形性质
浅谈数学探究性活动的内容、形式及教学设计
浅谈如何在数学教学中转化后进生
怎样让数学学习变得有趣
谈初中数学教学中如何把握教与学的关系
一个中学数学教师的困惑
数学课程标准修订组:新课标数学变在哪儿?
浅谈数学教师的情感教学
谈如何提高学生应用数学的能力
新课改下学生数学解题能力的发展问题和策略
浅谈数学复习课的教学策略
浅谈如何实现课堂教学的高效性
师生“课堂达标”方法的比较与研究
培养健康的学习心理,提高数学教学质量
浅析初中数学形式服从内容要处理好的几个关系
数学教学中学习动机和学习兴趣的培养
“问题解决教学”初探
对提高数学复习课有效性的几点看法
论如何提高初中数学试卷讲评课有效性
试析数学课程的民汉融合式实践教学研究
2016中考数学一模考试复习指导:尺规作图
浅谈数学新课程中的课堂讨论
浅谈数学教学反思的实际意义
2016中考数学考点复习指导:角的平分线定理
新课程理念下的数学教学的情景创设
数学课的互动教学法探讨
2016年中考数学第一轮复习辅导:一元一次方程
重视数学学习中的第六感提高数学解题能力
2016中考数学一模考前冲刺辅导:概率与统计
提高“学困生”学习数学兴趣的策略
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |