2016-08-15
收藏
对小学生数学故事最新:倒推转化巧拿硬币你了解多少呢,看看下文吧,希望您读后可以有所收获!
听说过拿硬币游戏吗?如果没听过,就先来熟悉一下拿硬币游戏的规则吧!拿硬币游戏是一个两个人玩的游戏,要求每个参加者轮流拿走若干硬币,谁拿到最后一枚硬币谁就算赢。下面我们来实际进行一次拿硬币的游戏。
游戏1:桌上放着15枚硬币,两个游戏者(你和你的一位同学)轮流取走若干枚。规则是每人每次至少取1枚,至多取5枚,谁拿到最后一枚谁就赢得全部15枚硬币。
游戏开始了,你一定在想:有没有能保证你赢的办法呢?若有,这办法又是什么呢?现在你把自己想象成处于即将赢的状态,该你取硬币了,而且桌面上硬币恰好不超过5枚,这时,你可以一次拿走桌上的所有硬币,成为赢者。现在,你能不能从这样的终点状态往前推,找出一个状态,使得只要你的对手处在这一状态,那么无论他拿走几枚硬币,你都会处于理想的获胜状态?不难发现,如果你的对手处于桌面有6枚硬币的状态,那么无论他拿走几枚(从1枚到5枚)硬币,桌上都会剩下至少1枚至多5枚硬币,这样胜利一定属于你。也就是说,谁拿走第(15-6=)9枚硬币,谁将获胜。于是,游戏1获胜情况就与下面游戏2结果相同。
游戏2:桌上放着9枚硬币,两个游戏者(你和你的一位同学)轮流取走若干个。规则是每人每次至少取1枚,至多取5枚,谁拿到最后一枚谁就赢得15枚硬币。
由对游戏1的倒推分析,我们不难知道,游戏2的获胜情况与下面游戏3结果相同。
游戏3:桌上放着3枚硬币,两个游戏者(你和你的一位同学)轮流取走若干个。规则是每人每次至少取1枚,至多取5枚,谁拿到最后一枚谁就赢得15枚硬币。
在游戏3中,你只要第一个从桌上拿走3枚硬币便可赢。可见,你要在游戏1中取胜,只要第一个取走桌面上的3枚硬币便一定能赢。
想一想:利用上面的最佳战略方法和你的小朋友做下面的游戏:桌上放30枚硬币,两个游戏者(你和你的一位同学)轮流取走若干个。规则是每人每次至少取2枚,至多取6枚,谁拿到最后一枚谁就赢得全部30枚硬币。
相信你,准赢。
上文是小学生数学故事最新:倒推转化巧拿硬币,希望文章对您有所帮助!
八年级数学勾股定理13
八年级数学勾股定理12
八年级数学分式和分式方程
八年级数学勾股定理的应用3
八年级数学分式方程概念及解法
八年级数学分式运算综合
八年级数学变量
八年级数学勾股定理10
八年级数学勾股定理的应用3
八年级数学概率的概念
八年级数学分式和分式方程
八年级数学单项式乘以多项式
八年级数学反比例函数实际应用
八年级数学勾股定理的有关证明
八年级数学勾股定理15
八年级数学勾股定理10
八年级数学函数有关概念
八年级数学函数2
八年级数学勾股定理的应用1
八年级数学勾股定理11
八年级数学函数1
八年级数学勾股定理的有关证明
八年级数学多项式乘以多项式
八年级数学调运问题
八年级数学勾股定理的应用4
八年级数学勾股定理15
八年级数学反比例函数的图象和性质初步
八年级数学反比例函数的图象和性质初步
八年级数学勾股定理的应用2
八年级数学变量、函数及函数图象
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |