2016-07-15
收藏
【摘要】以下是小编精心为您编辑整理的小学二年级数学知识点,供您参考,我们会持续更新,请留意,更多详细内容请点击查字典数学网查看。
对于任意一个整数除以一个自然数,一定存在唯一确定的商和余数,使被除数=除数商+余数(0余数除数),也就是说,整数a除以自然数b,一定存在唯一确定的q和r,使a=bq+r(0r
我们把对于已知整数a和自然数b,求q和r,使a=bq+r(0r
例如57=0(余5),66=1(余0),295=5(余4).
解决有关带余问题时常用到以下结论:
(1)被除数与余数的差能被除数整除.即如果ab=q(余r),那么b|(a-r).
因为ab=q(余r),有a=bq+r,从而a-r=bq,所以b|(a-r).
例如395=7(余4),有39=57+4,从而39-4=57,所以5|(39-4)
(2)两个数分别除以某一自然数,如果所得的余数相等,那么这两个数的差一定能被这个自然数整除.即如果a1b=q1(余r),a2b=q2(余r),那么b|(a1-a2),其中a1a2.
因为a1b=q1(余r),a2b=q2(余r),有a1=bq1+r,a2=bq2+r,从而a1-a2=(bql+r)-(bq2+r)=b(q1-q2),所以b|(a1-a2).
例如,223=7(余1),283=9(余1),有22=37+1,28=39+1,从而28-22=39-37=3(9-7),所以3|(28-22).
(3)如果两个数a1和a2除以同一个自然数b所得的余数分别为r1和r2,r1与r2的和除以b的余数是r,那么这两个数a1与a2的和除以b的余数也是r.
例如,18除以5的余数是3,24除以5的余数是4,那么(18+24)除以5的余数一定等于(3+4)除以5的余数(余2).
(4)被除数和除数同时扩大(或缩小)相同的倍数,商不变,余数的也随着扩大(或缩小)相同的倍数.即如果ab=q(余r),那么(am)(bm)=q(余rm),(am))(bm)=q(余rm)(其中m|a,m|b).
例如,146=2(余2),那么(148)(68)=2(余28),(142)(62)=2(余22).
下面讨论有关带余除法的问题.
例1 节日的街上挂起了一串串的彩灯,从第一盏开始,按照5盏红灯,4盏黄灯,3盏绿灯,2盏蓝灯的顺序重复地排下去,问第1996盏灯是什么颜色?
分析:因为彩灯是按照5盏红灯,4盏黄灯,3盏绿灯,2盏蓝灯的顺序重复地排下去,要求第1996盏灯是什么颜色,只要用1996除以5+4+3+2的余数是几,就可判断第1996盏灯是什么颜色了.
解:1996(5+4+3+2)=1424
所以第1996盏灯是红色.
以上就是由查字典数学网为您提供的小学二年级数学知识点,希望可以更好的帮助到您!!
用样本估计总体课件2
基本初等函数的导数公式及导数的运算法则课件2
七年级数学上册10月月考试题
角的度量与表示测试题
一元一次方程的应用测试题1
七年级数学上册第一次月考试题10
七年级数学上册第一次摸底考试试卷
一元一次方程检测试题4
算法的基本思想课件1
角的画法检测试题
一元一次方程检测试题3
代数式求值测试题
代数式练习
列一元一次方程解应用题的一般步骤练习
角的度量与表示检测试题1
合并同类项与去括号测试题
基本初等函数的导数公式及导数的运算法则课件1
七年级数学上册第一次月考试题1
一元一次方程检测试题2
代数式与列代数式测试题
科学记数法检测试题
角的比较测试题
一元一次方程检测试题1
角的比较检测试题
一元一次方程和它的解法测试题
基本不等式的实际应用课件
一元一次方程的应用检测试题1
七年级数学上册第一次摸底考试数学试卷
七年级数学上册10月质量调研试题
七年级数学上册检验学习状况考试试题
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |