2016-07-01
收藏
生活中的数学需要我们细心发现,查字典数学网为同学们特别提供了四色命题,希望对大家的学习有所帮助!
四色命题:任何一张平面地图,仅需四种不同颜色即可将所有区域(国家)完全区分开来。
如果将一个区域看成是一个点,则两个相邻区域可以看成是两点相连接。由此四色命题可以等价为:
等价命题1:
平面上有任意多点,这些点必须满足条以下两个条件:
条件1:点与点之间连接线互相不能交*
条件2:如果两点相连接,则这两点必须用不同的颜色以示区分。
证明仅需四种不同颜色即可完全区分所有点。
仅当平面上有5个点它们两两互相连接,需要我们用5种不同颜色来区分它们,由此可将命题1等价为
等价命题2:
平面上有任意多点,这些点必须满足条以下两个条件:
条件1:点与点之间连接线互相不能交*
条件2:如果两点相连接,则这两点必须用不同的颜色以示区分。
证明平面上不存在这样的五个点:它们两两互相连接,因而需要五种颜色来区分它们。
对于等价命题2的证明如下:
平面上任何两两互相连接且连接线不相交的四点所构成的几何图形同构于如下图1所示:
图1
该几何图形存在着一个封闭点D,并构成区域ABD,BCD和ADC。
现在考虑增加第五点E,存在两种情况:
E点在区域ABD,BCD和ADC这外
由于D点是封闭点,E点不可能与D点相连接且不与AB,BC,AC之任一条相交。
E点在区域ABD,BCD和ADC的任一个之中。
由于E点区域之中,则不可能与区域之外的另一点相连接而不与组成区域的边相交。
综合以上所述,不存在同满足条件的任意五点。因此不需要第五种颜色来区分。
希望为大家提供的四色命题,能够对大家有用,更多相关内容,请及时关注查字典数学网!
北京版五年级数学上册教案设计《欣赏和设计图案》
2019中考数学备考知识点:二次函数
北京版五年级数学上册教案设计《平行四边形的特征和面积》
北京版五年级数学上册教案设计《实际测量》
北京版六年级数学上册教案设计《总复习》
北京版五年级数学上册教案设计《密铺》
2019中考数学备考知识点:相似三角形
北京版五年级数学上册教案设计《可能性》
北京版五年级数学上册教案设计《小数除法》
北京版五年级数学上册教案设计《统计表》
北京版六年级数学上册教案设计《圆的周长》
北京版六年级数学上册教案设计《百分数和小数、分数的互化》
《圆周率的历史》教学反思
北京版六年级数学上册教案设计《圆的面积》
北京版五年级数学上册教案设计《节约用水》
小学一年级数学教研上课所思所想
北京版六年级数学上册教案设计《扇形》
北京版六年级数学上册教案设计《分数乘法》Lesson 4
2018—2019学年五年级数学上册教学计划
数学中最著名未解难题之一!“黎曼猜想”证明尚待检验
课后反思 功夫应在平时——记一次不同寻常的课
北京版六年级数学上册教案设计《分数乘法》Lesson 1
北京版五年级数学上册教案设计《三角形的特征和面积》
北京版六年级数学上册教案设计《分数乘法》Lesson 2
北京版六年级数学上册教案设计《实际问题》
北京版六年级数学上册教案设计《统计初步知识》
小学一年级数学10以内查数练习题
北京版五年级数学上册教案设计《我的午餐》
北京版五年级数学上册教案设计《平均数》
微课人教版四年级《加法交换律》教学设计
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |