2016-06-15
收藏
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。小编准备了第一学期高一数学教学进度安排,具体请看以下内容。
周次 |
课时
内容
重点、难点
预备及第1周
8
学法指导;
衔接教材第一、二章.
掌握高中数学的学习方法及初高中学法差别.
第2周
9.3~9.9
8
集合的含义与表示;
集合间的基本关系;
集合的基本运算.
会求两个简单集合的并集与交集;会求给定子集的补集;能使用Venn图表达集合的关系及运算.难点:理解概念.
第3周
9.10~9.16
8
函数的概念;
函数的表示法;
常见函数的定义域、值域求解.
会求一些简单函数的定义域和值域;能简单应用定义域及值域解题.
第4周
9.17~9.23
8
穿插衔接教材第三章一元二次函数及一元二次不等式.
三个二的联系和差别.难点:含参的一元二次不等式的解法.
第5周
9.24~9.30
---
学生军训
第6周
10.1~10.7
8
国庆及中秋放假;
单调性与最值.
学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义.
第7周
10.8~10.14
8
函数的奇偶性;
函数基本性质的应用;
第二章小结.
函数基本性质的综合应用,抽象函数的理解.
第8周
10.15~10.21
8
指数与指数幂的运算;
指数函数及其性质.
掌握幂的运算;探索并理解指数函数的单调性与特殊点.难点:理解概念.
第9周
10.22~10.28
8
对数与对数运算;
对数函数及其性质.
理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数.
第10周
10.29~11.4
8
幂函数.
从五个具体的幂函数(y=x,y=,y=,y=,y=)图象中认识幂函数的一些性质.
第11周
10.5~10.11
8
方程的根与函数零点;
二分法求方程近似解.
能够借助计算器用二分法求相应方程的近似解.
第12周
10.12~11.18
8
几类不同增长的模型、函数模型应用举例.
对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.
第13周
11.19~11.25
阶段复习及期中考试.
分章归纳复习+1套模拟测试.
第14周
11.26~12.2
8
任意角和弧度制;
任意角的三角函数.
了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义.
第15周
12.3~12.9
8
三角函数的诱导公式;
三角函数的图像和性质.
借助三角函数线推导出诱导公式,能画出y=sin,y=cos,y=tan的图像,了解三角函数的周期性.
第16周
12.10~12.16
8
函数y=Asin(+)的图像及简单性质的应用.
借助图像理解正弦、余弦、正切函数的性质,借助计算机画出图像观察A、、对函数图像变化的影响.
第17周
12.17~12.23
8
三角函数模型的简单应用及单元测试.
会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型.
第18周
12.24~12.30
8
平面向量的实际背景及基本概念;
平面向量的线性运算.
掌握向量加、减法的运算;理解其几何意义;掌握数乘运算及两个向量共线的含义;了解平面向量的基本定理;掌握正交分解及坐标表示;会用坐标表示平面向量的加减及数乘运算.
第19周
1
利用频率估计概率课后练习
点和圆位置关系测试题
一元一次方程一元一次不等式与一次函数检测试题
概率课后练习
配方法课后练习
方程检测试题1
概率初步课后练习1
圆周角课后练习
实际问题与一元一次方程测试题4
直线和圆的位置关系课后练习2
用列举法求概率课后练习1
弧长及扇形的面积课时练习2
方程检测试题5
方程检测试题4
概率初步课后练习4
直线和圆的位置关系课后练习1
一元二次方程测试题2
二次根式的加减课后练习1
比例线段课时练习1
实际问题与一元一次方程测试题2
一元二次方程测试题1
中心对称图形课后练习
正多边形和圆课后练习
弧长与扇形面积课后练习
中心对称课后练习
二次根式测试题2
含参一元二次方程的解法课后练习2
用列举法求概率课后练习2
概率初步单元测试卷
二次根式的乘除课后练习1
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |