2016年九年级下册数学第27章教学计划:相似三角形_课题研究 - 查字典数学网
数学2016年九年级下册数...
首页>数学教研>课题研究>2016年...

2016年九年级下册数学第27章教学计划:相似三角形

2016-03-20 收藏

学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。小编精心为大家整理了这篇2016年九年级下册数学第27章教学计划:相似三角形,供大家参考。

教学目标

(一)教学知识点

1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.

2.能根据相似比进行计算.

(二)能力训练要求

1.能根据定义判断两个三角形是否相似,训练学生的判断能力.

2.能根据相似比求长度和角度,培养学生的运用能力.

(三)情感与价值观要求

通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.

教学重点

相似三角形的定义及运用.

教学难点

根据定义求线段长或角的度数.

教学方法

类比讨论法

教具准备

投影片三张

第一张(记作§4.5 A)

第二张(记作§4.5 B)

第三张(记作§4.5 C)

教学过程

Ⅰ.创设问题情境,引入新课

[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.

[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.

相似多边形对应边的比叫做相似比.

[师]很好.请问相似多边形指的是哪些多边形呢?

[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.

[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.

Ⅱ.新课讲解

1.相似三角形的定义及记法

[师]因为相似三角形是相似多边形中的一类,因此,相似三角形的定义可仿照相似多边形的定义给出,大家可以吗?

[生]可以.

三角对应相等,三边对应成比例的两个三角形叫做相似三角形(similar triangles).如△ABC与△DEF相似,记作

△ABC∽△DEF

其中对应顶点要写在对应位置,如A与D,B与E,C与F相对应.AB∶DE等于相似比.[师]知道了相似三角形的定义,下面我们根据定义来做一些判断.

2.想一想

如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?

[生]由前面相似多边形的性质可知,对应角应相等,对应边应成比例.

所以∠A=∠D、∠B=∠E、∠C=∠F.

.

3.议一议

投影片(§4.5 A)

(1)两个全等三角形一定相似吗?为什么?

(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?

(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?

[师]请大家互相讨论.

[生]解:(1)两个全等三角形一定相似.

因为两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应边一定成比例,且相似比为1,因此满足相似三角形的两个条件,所以两个全等三角形一定相似.

(2)两个直角三角形不一定相似.

因为虽然都是直角三角形,但也只能确定有一对角即直角相等,其他的两对角可能相等,也可能不相等,对应边也不一定成比例,所以它们不一定相似.

两个等腰直角三角形一定相似.

因为两个等腰直角三角形Rt△ABC和Rt△DEF中,∠C=∠F=90°,则∠A=∠B=∠D=∠E=45°,所以有∠A=∠D,∠B=∠E,∠C=∠F.

再设△ABC中AC=b,△DEF中DF=a,则

AC=BC=b,AB= b

DF=EF=a,DE= a

所以两个等腰直角三角形一定相似.

(3)两个等腰三角形不一定相似.

因为等腰只能说明一个三角形中有两边相等,但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似.

两个等边三角形一定相似.

因为等边三角形的各边都相等,各角都等于60度,因此这两个等边三角形一定有对应角相等、对应边成比例,所以它们一定相似.

[师]由上可知,在特殊的三角形中,有的相似,有的不相似.

两个全等三角形一定相似.

两个等腰直角三角形一定相似.

两个等边三角形一定相似.

两个直角三角形和两个等腰三角形不一定相似.

4.例题

投影片(§4.5 B)

1.如图,有一块呈三角形形状的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的长都是3.5 cm,求该草坪其他两边的实际长度.图4-20

解:草坪的形状与其图纸上相应的形状相似,它们的相似比是2000∶5=400∶1

如果设其他两边的实际长度都是x cm,则

x=3.5×400=1400(cm)=14(m)

所以,草坪其他两边的实际长度都是14 m .

投影片(§4.5 C)

2.如图,已知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC=70 cm,∠BAC=45°,∠ACB=40°,求

图4-21

(1)∠AED和∠ADE的度数;

(2)DE的长.

解:(1)因为△ABC∽△ADE.

所以由相似三角形对应角相等,得

∠AED=∠ACB=40°

在△ADE中,

∠AED+∠ADE+∠A=180°

即40°+∠ADE+45°=180°,

所以∠ADE=180°-40°-45°=95°.

(2)因为△ABC∽△ADE,所以由相似三角形对应边成比例,得

所以

DE= =43.75(cm).

5.想一想

在例2的条件下,图中有哪些线段成比例?

[师]请大家试一试.

[生]成比例线段有

图中有互相平行的线段,即DE∥BC.因为△ABC∽△ADE,所以∠ADE=∠B.由平行线的判定方法知DE∥BC.

Ⅲ.课堂练习

1.在下面的两组图形中,各有两个相似三角形,试确定x,y,m,n的值.

图4-22

解:在(1)中

因为 =

所以x=32

在(2)中,由两三角形相似可知:对应角相等,对应边成比例.所以,

n=55,m=80

,得y=

2.等腰直角三角形ABC与等腰直角三角形A′B′C′相似,相似比为3∶1,已知斜边AB=5 cm,求△A′B′C′斜边A′B′上的高.

图4-23

解:如图所示:CD、C′D′分别是△ABC与△A′B′C′斜边AB与A′B′边上的高.

因为在Rt△ABC中,∠A=45°,CD⊥AB.

所以CD=AD= AB= (cm)

同理可知:C′D′=A′D′= A′B′.

又因为△ABC∽△A′B′C′,且相似比为3∶1.

所以 .即 ,得

A′B′=

所以C′D′= A′B′= (cm)

Ⅳ.课时小结

相似三角形的判定方法--定义法.

Ⅴ.课后作业

习题4.6

1.解:因为△ABC∽△DEF

所以,有 .

而AB=3 cm,BC=4 cm,CA=2 cm,EF=6 cm.

得 .

解,得DE= (cm)

DF=3(cm)

2.解:因为两个三角形相似,所以它们的对应角相等,若两内角为50°、60°,则另一内角为180°-50°-60°=70°,这个三角形的最大内角和最小内角就是另一个三角形的最大内角和最小内角.

因此,另一个三角形的最大内角为70°,最小内角为50°.

Ⅵ.活动与探究

引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.

如图

图4-24

已知:DE∥BC,交AB于D、AC于E.

则有:

定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.

已知:如图,如果DE∥BC,DE交AB、AC于D、E

图4-25

求证:△ADE∽△ABC.

证明:∵DE∥BC.

由引理得 .

且∠ADE=∠B,∠AED=∠C.

又∵∠A=∠A.

∴由相似三角形的定义可知

△ADE∽△ABC.

板书设计

§4.5 相似三角形

一、1.相似三角形的定义及记法

2.想一想

3.议一议(特殊三角形是否相似)

4.例题

二、课堂练习

三、课时小结

四、课后作业

这篇2016年九年级下册数学第27章教学计划:相似三角形就为大家分享到这里了。希望对大家有所帮助!

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限