2016-01-20
收藏
1.教学的预设与应变
分数的基本性质这节课用猜想验证反思的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习,不仅对学生提出了挑战,而且对老师也提出了更大的挑战。因为学生有了更大的思考空间,学习方式是开放的,解决问题的方式是多元的,这就要求教师备课时能站在学生的角度思考,提高教学的预设能力。同时,学生探究的过程曲曲折折,不同的学生会遇到不同的磕磕碰碰,暴露出不同的问题,甚至许多问题教师都难以预料,这些又对教师临场应变、驾驭课堂的能力提出了更高的要求。要求教师能以人为本,根据学生不同情况采取不同的教学方式。
譬如,这节课提出猜想是非常重要的一环,它确定了研究的方向。可是如前所述,如果有些学生用类比的方法提不出猜想,怎么办?教师可以从另一个角度启发学生。相反,如果学生非常活跃,出现的猜想很多,无法在一节课中一一验证,怎么办?教师可先让学生选择其中一个最重要的猜想进行验证,学会了方法后,再分组各自选择自己喜欢的猜想验证,最后全班交流,提高了时效性。教师要充分信任学生,放手让学生做思维的先行者,不怕走弯路,不怕出问题,因为学生有了问题才更有探索的价值。
如果教师善于抓住学生暴露的真实问题,恰当的组织交流和讨论,将使之成为教学的最佳资源。
2.目标的全面与侧重
也许,有教师会问:如果学生花在探究的时间多了,练习的时间少了,知识与技能目标能否达到?是的,知识与技能、过程与方法、情感与态度是新课标提出的三位一体的目标,都很重要,教师必须努力实现三个目标的和谐统一,但具体到每节课还是可以根据内容的特别有所侧重。譬如,本节课,我根据分数基本性质的规律性,侧重于过程性目标的落实。因为我认为在这节课学生发现探索的过程比知识本身更重要,更有利于学生能力和方法的培养;而且,学生通过探究获得的知识是学生主动建构起来的,是学生自己经历的、真正属于他自己的知识,这远比做大量习题理解得更深刻,更有利于学生的发展
高二数学棱柱1
高二数学空间的平行关系
高二数学点到直线的距离1
高二数学球和它的性质课件
高二数学空间距离2
高二数学棱柱2
高二数学球的体积和表面积
高二数学空间向量的夹角
高二数学棱柱与棱锥3
高二数学空间向量的数量积
高二数学数系的扩充与复数的概念
高二数学流程图—选择结构
高二数学概率5
高二数学球和它的性质1
高二数学空间向量解决空间距离问题
高二数学概率6
高二数学曲线方程2
高二数学生活中的抛物线
高二数学曲线和方程1
高二数学求曲线方程
高二数学棱柱的概念与性质
高二数学棱柱与棱锥1
高二数学空间直线平行
高二数学流程图
高二数学概率4
高二数学空间距离3
高二数学根的分布简单逻辑
高二数学棱锥的概念与性质
高二数学球的表面积
高二数学点到直线的距离2
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |