2016-01-12
收藏
学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。因此,精品编辑老师为大家整理了初二数学上册第一单元同步练习,供大家参考。
一、选择题(每小题3分,共30分)
1.在下列条件:①∠A+∠B=∠C,②∠A∶∠B∶∠C=2∶3∶4,③∠A=90°-∠B,
④∠A=∠B= ∠C中,能确定△ABC是直角三角形的条件有( )
A.1个 B.2个 C.3个 D.4个
2.如图,∠BAC=90°,AD⊥BC,则图中互余的角有( )
A.2对 B.3对 C.4对 D.5对
3.(2015•福建泉州中考)已知在△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( )
A.11 B.5 C.2 D.1
4.如图,AC与BD相交于点O,已知AB=CD,AD=BC,则图中全等的三角形有( )
A. 1对 B. 2对 C. 3对 D. 4对
5.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那
么∠ACB等于( )
A. 80° B. 72° C. 48° D. 36°
6. (2015•浙江湖州中考)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )
A.10 B.7 C.5 D.4
7. 如图,∠1=∠2,∠C=∠B,下列结论中不正确的是( )
A. △DAB≌△DAC B. △DEA≌△DFA C. CD=DE D. ∠AED=∠AFD
8.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度
数是( )
A. 180° B.360° C.540° D.720°
9.直线l⊥线段AB于点O,且OA=OB,点C为直线l上一点,且有CA=8 cm,则CB
的长度为( )
A.4 cm B.8 cm
C.16 cm D.无法求出
10.如图,点D,E分别在AC,AB上,已知AB=AC,添加下列
条件,不能说明△ABD≌△ACE的是( )
A.∠B=∠C B.AD=AE
C.∠BDC=∠CEB D.BD=CE
二、填空题(每小题3分,共18分)
11.在△ABC中,AB=9,BC=2,周长是偶数,则AC= .
12.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BDC= ,∠BOC= .
13.如图,在△ABC中,AB=2 012,AC=2 010,AD为中线,则△ABD与△ACD的周长
之差= .
14. 在Rt△ABC中,一个锐角为25°, 则另一个锐角为________.
15.如图,在△ABC中,DE是AC的中垂线,AD=5,BD=2,则BC的长是 .
16.如图,在矩形ABCD中(AD>AB),M为CD上一点,若沿着AM折叠,点D恰好落在BC上的点N处,则∠ANB+∠MNC=____________.
三、解答题(共52分)
17.(6分)如图,CD是线段AB的垂直平分线,则∠CAD=∠CBD.请说明理由.
解:∵ CD是线段AB的垂直平分线( ),
∴ AC= , =BD( ).
在 和 中,
=BC, AD= ,
CD= ( ),
∴ ≌ ( ).
∴ ∠CAD=∠CBD( ).
18.(6分)如图,在△ABC中,∠B=42o,∠C=72 o,AD是△ABC的角平分线,
(1)∠BAC等于多少度?简要说明理由.
(2)∠ADC等于多少度?简要说明理由.
19.(6分)如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2 cm,BD=3 cm,求线段BC的长.
20.(6分)如图,△ABC的两条高AD,BE相交于点H,且AD=BD,试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.
21.(7分)如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A= 时,求∠BPC的度数.
22.(6分)如图,AD⊥BD,AE平分∠BAC, ∠B=30°,∠ACD=70°,求∠AED的度数.
23.(7分)如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,
AC=AE,试说明:△ABC≌△ADE.
24.(8分)(2015•浙江杭州中考)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.
(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形;
(2)用直尺和圆规作出三边满足a
第1章 三角形的初步知识检测题参考答案
一、选择题
1.C 解析:①③④能确定△ABC是直角三角形.
2.C 解析:∠ABD与∠BAD,∠BAD与∠DAC,∠DAC与∠ACD,∠ABC与∠ACB分别互余.
3.B 解析:根据三角形的三边关系,得6-4
则边AC的长可能是5.
4.D 解析:△AOB≌△COD,△AOD≌△COB,△ACD≌△CAB,△ABD≌△CDB.
5.B 解析:设∠B=x°,则∠BAD=∠CAD= x°,∠DAE= x°,故∠ADE=2 x°.
又AE⊥BC,故∠ADE+∠DAE=90°,
即2x°+ x°=90°,故x=36,
则∠ACB=180°-3×36°=72°.
6.C 解析:过点E作EF⊥BC,垂足为F,
根据角平分线上的点到角的两边的距离相等可得ED=EF=2,
所以 ,故选C.
第6题答图
7.C 解析:根据已知条件不能得出CD=DE.
8.B 解析:三角形的外角和为360°.
9.B 解析:线段垂直平分线上的点到线段两端的距离相等.
10.D 解析:由题图及已知可得∠A=∠A,AB=AC,
故添加条件∠B=∠C,由ASA可得△ABD≌△ACE;
添加条件AD=AE,由SAS可得△ABD≌△ACE;
添加条件∠BDC=∠CEB,可得∠B=∠C,由ASA可得△ABD≌△ACE.
添加条件BD=CE不能说明△ABD≌△ACE.故选D.
二、填空题
11.9 解析:由三角形三边关系可得7
又三角形周长为偶数,故AC=9.
12.78° 110° 解析:∠BDC=∠A+∠ABO=50°+28°=78°,
∠BOC=∠BDC+∠ACO=78°+32°=110°.
13.2 解析:(AB+AD+BD)-(AC+AD+CD)=AB-AC=2.
14.5 65° 解析:90°-25°=65°.
15.7 解析:因为DE是AC的中垂线,AD=5,所以CD=AD=5.
又BD=2,所以BC=BD+CD=2+5=7.
16.90° 解析:∠ANB+∠MNC=180°-∠D=180°-90°=90°.
三、解答题
17.解:∵ CD是线段AB的垂直平分线(已知),
∴ AC= BC,AD=BD(线段垂直平分线上的点到线段两端的距离相等).
在△CDA和△CDB中,AC=BC,AD= BD,CD=CD(公共边相等),
∴ △CDA≌△CDB(SSS).
∴ ∠CAD=∠CBD(全等三角形对应角相等).
18.解:(1)∠BAC=180°-42°-72°=66°(三角形的内角和为180°).
(2) ∵ ∠ADC=∠B+∠BAD(三角形的一个外角等于和它不相邻的两内角之和),
又∵ AD是角平分线,
∴ ∠BAD=∠CAD=33°(角平分线的定义),
∴ ∠ADC=42°+33°=75°.
19.解:∵ AD是角平分线,
∴∠EAD=∠CAD(角平分线的定义).
∵ AE=AC(已知),AD=AD(公共边相等),
∴ △AED≌△ACD(SAS).
∴ ED=DC(全等三角形对应边相等).
∵ BD=3,ED=2,∴ BC=5.
2014初一下册数学期末试卷
2014初中数学第二册期末考试试题答案
北师大版的初一下学期数学期末考试题
2014初一下学期数学期末测试卷
2014初一下学期数学期末试题
2014初一数学下学期期末试题
2014初一数学下学期期末测试题答案
2014年初中七年级数学下册试卷
2014新初一数学下学期期末测试卷答案
2014初一下学期数学期末考试题答案
2014初一数学下学期期末考试试卷分析
2014七年级数学第二学期期末试题
七年级数学第二学期期末考试试题2014
北师大版初一数学下学期期末测试题
2014年初一数学下册期末考试卷答案
2014年初中七年级政治下册测试卷
2014初一下册数学期末测试题
2014初中数学第二册期末考试卷答案
2014初中数学第二册期末测试卷
2014年初二年级数学期中试卷
2014新初一下册数学试卷
2014年新初中数学第二册期末试卷
初一年级上册数学试卷
2014初一下册数学期末试卷答案
初一下学期数学期末试题答案2014
2014年七年级第二学期数学期末考试卷
2014初一下册数学期末试题分析
2014年初一年级数学复习试卷
2014年初一数学下学期期末试卷分析
初中数学第二册期末考试试题分析2014
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |