2015-12-28
收藏
★例1 1.24+0.78+8.76
解 原式=(1.24+8.76)+0.78
=10+0.78
=10.78
【解题关键和提示】
运用加法的交换律与结合律,因为1.24与8.76结合起来,和正好是整数10。
★例2 933-157-43
解 原式=933-(157+43)=933-200=733
【解题关键和提示】
根据减法去括号的性质,从一个数里连续减去几个数,可以减去这几个数的和。因此题157与43的和正好是200。
★例3 4821-998
=4821-1000+2=3823
【解题关键和提示】
此题中的减数998接近1000,我们就把它变成1000-2,根据减法去括号性质,原式=4821-1000+2,这样就可口算出来了,计算熟练后,998变成1000-2这一步可省略。
★例4 0.4×125×25×0.8
解 原式=(0.4×25)×(125×0.8)=10×100=1000
【解题关键和提示】
运用乘法的交换律和结合律,因为0.4×25正好得10,而125×0.8正好得100。
★例5 1.25×(8+10)
解 原式=1.25×8+1.25×10=10+12.5=22.5
【解题关键和提示】
根据乘法分配律,两个加数的和与一个数相乘,可用每一个加数分别与这个数相乘,再把所得的积相加。
★★例6 9123-(123+8.8)
解 原式=9123-123-8.8=9000-8.8=8991.2
【解题关键和提示】
根据减法去括号的性质,从一个数里减去几个数的和,可以连续减去这几个数,因为9123减去123正好得9000,需要注意的是减法去掉括号后,原来加上8.8现已变成减去8.8了。
★★例7 1.24×8.3+8.3×1.76
解 原式=8.3×(1.24+1.76)=8.3×3=24.9
【解题关键和提示】
此种解法是乘法分配律的逆运用。即几个数同乘以一个数的和,可用这几个数的和乘以这个数。
★★例8 9999×1001
解 原式=9999×(1000+1)=9999×1000+9999×1
=10008999
【解题关键和提示】
此题把1001看成1000+1,然后根据乘法的分配律去简算。
【解题关键和提示】
此题中运用了两次乘法分配律,因此不能只满足第一次简算成功,要继续寻找合理灵活的算法,直到全部结束。
【解题关键和提示】
此题根据需要,运用了两次减法去括号的性质。
★★★例11 14.8×6.3-6.3×6.5+8.3×3.7
解 原式=(14.8-6.5)×6.3+8.3×3.7
=8.3×6.3+8.3×3.7
=8.3×(6.3+3.7)
=8.3×10
=83
【解题关键和提示】
此题中的8.3×3.7不能在第一次简算时误看作6.3×3.7,第一次它不能参与简算,那么就把它照抄下来,看后面是否有机会。第一次简算的结果正好出现了8.3×6.3,这样可以进行第二次简算。
★★★例12 32×125×25
解 原式=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
【解题关键和提示】
把32分解成4×8,这样125×8和25×4都可得到整百、整千的数。
八年级数学圆的基本概念和性质1
八年级数学平行四边形性质2
八年级数学圆的基本概念和性质2
八年级数学有理数的加法
八年级数学平方根2
八年级数学平方根3
八年级数学平方根8
八年级数学平面直角坐标系2
八年级数学数据的整理
八年级数学平方根2
八年级数学实际问题与一元一次不等式
八年级数学特殊三角形
八年级数学数据的整理
八年级数学平行四边形性质2
八年级数学实数复习1
八年级数学平方根7
八年级数学基本作图
八年级数学平行线的判定1
八年级数学可能性大小
八年级数学平行线的性质定理
八年级数学实数复习1
八年级数学可能性大小
八年级数学用函数观点看方程(组)与不等式1
八年级数学用函数观点看方程(组)与不等式1
八年级数学平方根4
八年级数学实数复习2
八年级数学平方根3
八年级数学平行线的判定2
八年级数学圆的概念
八年级数学实际问题与一元一次不等式
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |