2015-12-21
收藏
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
一般的最常用公式有:
Sin(A+B)=SinA*CosB+SinB*CosA
Sin(A-B)=SinA*CosB-SinB*CosA
Cos(A+B)=CosA*CosB-SinA*SinB
Cos(A-B)=CosA*CosB+SinA*SinB
Tan(A+B)=(TanA+TanB)/(1-TanA*TanB)
Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·积的关系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
三角函数恒等变形公式
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=vercos(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
部分高等内容
·高等代数中三角函数的指数表示(由泰勒级数易得):
sinx=[e^(ix)-e^(-ix)]/(2i)
cosx=[e^(ix)+e^(-ix)]/2
tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…
此时三角函数定义域已推广至整个复数集。
·三角函数作为微分方程的解:
对于微分方程组y=-y'';y=y'''',有通解Q,可证明
Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。
补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。
特殊三角函数值
a0`30`45`60`90`
sina01/2√2/2√3/21
cosa1√3/2√2/21/20
tana0√3/31√3None
cotaNone√31√3/30
三角函数的计算
幂级数
c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)
它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.
泰勒展开式(幂级数展开法):
f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...
实用幂级数:
ex=1+x+x2/2!+x3/3!+...+xn/n!+...
ln(1+x)=x-x2/3+x3/3-...(-1)k-1*xk/k+...(|x|<1)
sinx=x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+...(-∞
cosx=1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+...(-∞
arcsinx=x+1/2*x3/3+1*3/(2*4)*x5/5+...(|x|<1)
arccosx=π-(x+1/2*x3/3+1*3/(2*4)*x5/5+...)(|x|<1)
arctanx=x-x^3/3+x^5/5-...(x≤1)
sinhx=x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+...(-∞
coshx=1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+...(-∞
arcsinhx=x-1/2*x3/3+1*3/(2*4)*x5/5-...(|x|<1)
arctanhx=x+x^3/3+x^5/5+...(|x|<1)
--------------------------------------------------------------------------------
傅立叶级数(三角级数)
f(x)=a0/2+∑(n=0..∞)(ancosnx+bnsinnx)
a0=1/π∫(π..-π)(f(x))dx
an=1/π∫(π..-π)(f(x)cosnx)dx
bn=1/π∫(π..-π)(f(x)sinnx)dx
注意:正切也可以表示为“Tg”如:TanA=TgA
Sin2a=2SinaCosa
Cos2a=Cosa^2-Sina^2
=1-2Sina^2
=2Cosa^2-1
Tan2a=2Tana/1-Tana^2
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
高一数学视频
更多
相关数学公式总结推荐
大家都在看
高考数学等差等比复习
高考数学直线与圆锥曲线的位置关系1
高考数学直线与圆
高考数学等差数列与等比数列
高考数学数列求和
高考数学数列的通项公式2
高考数学线性规划复习
高考数学综合法复习
高考数学数列2
高考数学转换与构造复习
高考数学集合复习
高考数学三角函数章复习
高考数学统计复习
高考数学三角函数3
高考数学概率复习2
高考数学集合的概念与运算
高考数学含绝对值的不等式2
高考数学三角函数复习
高考数学数列1
高考数学逻辑连结词复习
高考数学空间向量的应用复习
高考数学数列的通项公式1
高考数学直线方程复习
高考数学集合的概念及运算
高考数学函数1.
高考数学直线与平面垂直复习
高考数学函数复习2
高考数学等差与等比
高考数学函数3
高考数学二次函数最值
| 小学 |
| 初中 |
| 高中 |
| 不限 |
| 一年级 | 二年级 |
| 三年级 | 四年级 |
| 五年级 | 六年级 |
| 初一 | 初二 |
| 初三 | 高一 |
| 高二 | 高三 |
| 小考 | 中考 |
| 高考 |
| 不限 |
| 数学教案 |
| 数学课件 |
| 数学试题 |
| 不限 |
| 人教版 | 苏教版 |
| 北师版 | 冀教版 |
| 西师版 | 浙教版 |
| 青岛版 | 北京版 |
| 华师大版 | 湘教版 |
| 鲁教版 | 苏科版 |
| 沪教版 | 新课标A版 |
| 新课标B版 | 上海教育版 |
| 部编版 |
| 不限 |
| 上册 |
| 下册 |
| 不限 |