2015-12-11
收藏
知识点对朋友们的学习非常重要,大家一定要认真掌握,查字典数学网为大家整理了人教版九年级上册数学知识点整理:二次函数,让我们一起学习,一起进步吧!
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;
当a与b异号时(即ab0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。由查字典数学网为您提供的人教版九年级上册数学知识点整理:二次函数,祝您学习愉快!
用一位数除商二位数例题三
口算除法例题一
被乘数中间、末尾有零练习
口算除法例题三
用一位数除商二位数准备题
笔算商末尾有零除法练习一
笔算商中间有零除法练习一
笔算商中间有零除法例题三
笔算商末尾有零除法例题一
笔算商中间有零除法准备题
笔算商末尾有零除法例题二
笔算商中间有零除法例题一
一个因数是一位数的乘法口算乘法-口算乘法例题二
笔算商中间有零除法例题二
直线、线段的练习03
用一位数除商二位数例题二
笔算除法应用题准备题
直线、线段的练习01
口算除法准备题
认识厘米、用厘米量练习02
笔算除法应用题例题一
被乘数中间、末尾有零准备
笔算商末尾有零除法练习二
用一位数除商二位数例题一
笔算除法应用题例题二
笔算除法的验算练习一
认识米、用米量的练习01
直线、线段的例题03
口算除法练习二
笔算乘法被乘数中间、末尾有零例题01
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |