2015-11-10
收藏
成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。小编给大家准备了初二数学知识点:二元一次方程,欢迎参考!
1、直接开平方法:
直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如(x-m)2=n(n0)的方程,其解为x=根号下n+m.
例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=110,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7
(3x+1)2=5
3x+1=(注意不要丢解)
x=
原方程的解为x1=,x2=
(2)解:9x2-24x+16=11
(3x-4)2=11
3x-4=
x=
原方程的解为x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0(a0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2
方程左边成为一个完全平方式:(x+)2=
当b^2-4ac0时,x+=
x=(这就是求根公式)
例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)
解:将常数项移到方程右边3x^2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+()2=+()2
配方:(x-)2=
直接开平方得:x-=
x=
原方程的解为x1=,x2=.
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac0时,把各项系数a,b,c的值代入求根公式x=[-b(b^2-4ac)^(1/2)]/(2a),(b^2-4ac0)就可得到方程的根。
例3.用公式法解方程2x2-8x=-5
解:将方程化为一般形式:2x2-8x+5=0
a=2,b=-8,c=5
b^2-4ac=(-8)2-425=64-40=240
x=[(-b(b^2-4ac)^(1/2)]/(2a)
原方程的解为x1=,x2=.
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1)(x+3)(x-6)=-8(2)2x2+3x=0
(3)6x2+5x-50=0(选学)(4)x2-2(+)x+4=0(选学)
(1)解:(x+3)(x-6)=-8化简整理得
x2-3x-10=0(方程左边为二次三项式,右边为零)
(x-5)(x+2)=0(方程左边分解因式)
x-5=0或x+2=0(转化成两个一元一次方程)
x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0(用提公因式法将方程左边分解因式)
x=0或2x+3=0(转化成两个一元一次方程)
x1=0,x2=-是原方程的解。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0(十字相乘分解因式时要特别注意符号不要出错)
2x-5=0或3x+10=0
x1=,x2=-是原方程的解。
(4)解:x2-2(+)x+4=0(∵4可分解为22,此题可用因式分解法)
(x-2)(x-2)=0
x1=2,x2=2是原方程的解。
小结:
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法
解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。
小编为大家整理的初二数学知识点:二元一次方程解法大全就先到这里,希望大家学习的时候每天都有进步。
两角和与差的正弦、余弦、正切公式课件1
2017-2018学年高二数学下册知识点综合检测27
两直线的焦点坐标课件
用反比例函数解决问题学案3
可化为一元一次方程的方式方程课件
反比例函数学案
幂函数课件1
2018年青岛版四年级数学下册1-2单元测试题下载
两数和乘以这两数的差课件
利用统计图表传递信息课件
2018年北师大版六年级数学下册第一次月考试卷下载
2017—2018学年度人教版六年级数学下册期中考试题(一)下载
定义与命题导学案
2017-2018学年度第二学期人教版五年级数学期中检测试题(二)下载
幂函数课件2
2017-2018学年高二数学下学期课堂强化训练20
四边形导学案
用表格表示变量之间的关系导学案
2018人教版小学二年级下册数学单元测试题全套
用反比例函数解决问题学案5
2017-2018学年高二数学下册知识点综合检测26
两数和(差)的平方课件
幂函数课件10
两个直角三角形全等的判定课件
开平方法课件
矩形课件7
2018年小学数学六下第一次月考试卷
幂函数课件3
人教版2017—2018学年度六年级数学下册期中考试题(四)
用反比例函数解决问题学案4
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |