2015-10-20
收藏
因式分解中的四个注意,可用四句话概括首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
现举下例 可供参考例1 把-a2-b2+2ab+4分解因式。解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误例2把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)这里的“公”指“公因式”。
如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。考试时应注意在没有说明化到实数时,一般只化到有理数就够了由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。
人教[2012]版数学二上《轴对称图形》课件
人教[2012]版数学二上《认识时间》ppt课件
2014秋人教版数学二上4.2《5的乘法口诀》ppt课件2
2014秋人教版数学二上4.3《2、3、4的乘法口诀》ppt课件3
2014秋人教版数学二上4.1《乘法的初步认识》ppt课件3
2014秋人教版数学二上4.4《6的乘法口诀》ppt课件2
2014秋人教版数学二上4.4《6的乘法口诀》ppt课件3
2014秋人教版数学二上4.3《2、3、4的乘法口诀》ppt课件4
2014秋人教版数学二上6.1《7的乘法口诀》ppt课件2
人教[2012]版数学二上《连加、连减和加减混合》ppt课件
2014秋人教版数学二上4.4《6的乘法口诀》ppt课件4
人教[2012]版数学二上《观察物体(一)》ppt课件
2014秋人教版数学二上2.2《两位数减两位数》ppt课件4
2014秋人教版数学二上2.2《两位数减两位数》ppt课件3
2014秋人教版数学二上4.2《5的乘法口诀》ppt课件3
2014秋人教版数学二上6.2《倍的意义及应用》ppt课件2
2014秋人教版数学二上4.3《2、3、4的乘法口诀》ppt课件1
2014秋人教版数学二上5.2《轴对称图形》ppt课件1
2014秋人教版数学二上4.2《5的乘法口诀》ppt课件4
人教[2012]版数学二上《认识时间》ppt课件1
人教[2012]版数学二上《长度单位》ppt复习课件
人教[2012]版数学二上《认识米和厘米》ppt课件
2014秋人教版数学二上6.1《7的乘法口诀》ppt课件1
人教[2012]版数学二上《观察物体》ppt课件2
2014秋人教版数学二上6.1《7的乘法口诀》ppt课件3
人教[2012]版数学二上《认识线段》ppt课件
2014秋人教版数学二上5.2《轴对称图形》ppt课件3
2014秋人教版数学二上6.3《8的乘法口诀》ppt课件1
人教[2012]版数学二上《连加、连减和加减混合》ppt课件1
人教[2012]版数学二上《观察物体》ppt课件包(2课时)
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |