2017-09-04
收藏
(一)、基本概念
1、“全等”的理解全等的图形必须满足:
(1)形状相同的图形;
(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。
初中数学全等三角形有关知识总结
2、全等三角形的性质
(1)全等三角形对应边相等;
(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上
(二)灵活运用定理
证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。
运用定理证明三角形全等时要注意以下几点。
1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:
①夹边相等(ASA)
②任一组等角的对边相等(AAS)
(2)已知条件中有两边对应相等,可找
①夹角相等(SAS)
②第三组边也相等(SSS)
(3)已知条件中有一边一角对应相等,可找
①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)
三、疑点、易错点
1、对全等三角形书写的错误
在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。切记不要弄错。
2、对全等三角形判定方法理解错误;
3、利用角平分线的性质证题时,要克服多数同学习惯于用全等证明的思维定势的消极影响。
人教版小学数学六年级上册期末测试卷
12秋季六年级上册数学期末检测题(西师大版)
苏教版六年级上册数学期末模拟试题
六年级(上)数学期终考试卷
11年六年级数学上册期末试卷
六年级数学期末模拟试卷024
六年级数学(上)期末试卷
人教版新课标上学期六年级数学期末检测卷
六年级上学期数学期末试题4
下沙学校六年级上册数学期末试卷5
六年级数学上册期末试卷:基础
12年六年级数学上册期末模拟试题(苏教版)
13学年六年级上册数学期末考试卷
人教版六年级上册数学期末试题
六年级上册数学期末试卷(苏教版)
数学上学期期末水平测试卷
下沙学校六年级上册数学期末试卷3
苏教版小学数学六年级试卷
苏教版六年级上册数学期末训练试题
苏教版六年级上册数学期末试卷
13苏教版六年级上册数学期末试卷
青岛版六年级上册数学期末试卷
小学数学六年级上学期期末测试卷
学年第一学期六年级数学期末测试卷
数学六年级上册期末试卷
13六年级上册数学期终试卷
12年北师大版六年级上册数学期末考试卷
12年六年级数学上册期末检测试卷(西师版)
北师大版六年级数学上册期末试卷022
六年级(上)数学期末试题(新人教)
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |