2017-03-14
收藏
1.难度:★★★★从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?
2.难度:★★★★
从1到100的所有自然数中,不含有数字4的自然数有多少个?
1.难度:★★★★从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?
【解答】6×4=24种
6×2=12种
4×2=8种
24+12+8=44种
【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。当从国画、油画各选一幅有多少种选法时,利用的乘法原理。由此可知这是一道利用两个原理的综合题。关键是正确把握原理。
符合要求的选法可分三类:
设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。由乘法原理有 6×4=24种选法。
第二类为:国画、水彩画各一幅,由乘法原理有 6×2=12种选法。
第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。
这三类是各自独立发生互不相干进行的。
因此,依加法原理,选取两幅不同类型的画布置教室的选法有 24+12+8=44种。
2.难度:★★★★
从1到100的所有自然数中,不含有数字4的自然数有多少个?
【解答】从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.
一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;
两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72 个数不含4.
三位数只有100.
所以一共有8+8×9+1=81 个不含4的自然数.
把整数或带分数化成假分数
五年级数学小学数学九册教案
小学数学第九册教案全册
最简分数可以化成有限小数的特征
五年级数学循环小数教案
五年级数学解方程课堂实录
五年级数学第二学期教学计划
五年级数学下册练习五课件
五年级数学欢乐北京五日游
五年级数学分数和小数互化
五年级数学解简易方程
五年级数学旅游费用教学设计
五年级数学下册第三单元教案
五年级数学上册第7单元教案
五年级用字母表示数教案
五年级数学上册第二单元第三课时教案
五年级数学下册练习一教案
五年级数学小数乘法教案
五年级数学下册一二单元教案
五年级数学分饼教学设计
五年级下册数学教案合集
五年级数学折纸1
五年级数学长方体和正方体的整理与复习
五年级数学公倍数和最小公倍数的应用
五年级数学分解质因数
五年级数学观察物体教案
五年级数学下册第四单元教案1
五年级数学折纸2
五年级数学上册整理与复习
五年级数学看课外书时间
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |