2017-02-16
收藏
锐角三角函数公式
sinα=∠α的对边/斜边
cosα=∠α的邻边/斜边
tanα=∠α的对边/∠α的邻边
cotα=∠α的邻边/∠α的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2是sinA的平方sin2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
辅助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
=2sina(1-sin?a)+(1-2sin?a)sina
=3sina-4sin?a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos?a-1)cosa-2(1-sin?a)cosa
=4cos?a-3cosa
sin3a=3sina-4sin?a
=4sina(3/4-sin?a)
=4sina[(√3/2)?-sin?a]
=4sina(sin?60°-sin?a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos?a-3cosa
=4cosa(cos?a-3/4)
=4cosa[cos?a-(√3/2)?]
=4cosa(cos?a-cos?30°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
空间几何体的表面积教案
指数教案
空间几何体的表面积教学设计
两条直线的平行与垂直教案4
两条直线的平行与垂直教案1
平面与平面平行教学设计
空间两点间的距离教案1
平面与平面垂直教学设计
直线的斜率教学设计2
不等式教学设计
集合教案
两条直线的交点教学设计
直线的方程教学设计2
点到直线的距离教学设计1
异面直线教学设计
集合间的基本关系教案
空间几何体的体积教案2
数列教学设计
两条直线的平行与垂直教学设计1
空间两点间的距离教案2
幂函数教案
几类不同增长的函数模型教案
圆与圆的位置关系教学设计
两条直线的平行与垂直教案2
直线的斜率教学设计1
直线的方程教学设计1
三角恒等变换教学设计2
空间几何体的表面积教案1
三角函数教案1
集合和函数的概念教学设计
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |