2016-12-17
收藏
3.1.1方程的根与函数的零点课标分析
【课标分析】
必修一第三章“函数与方程”是高中数学的新增内容,是近年来高考关注的热点.本章函数与方程是中学数学的核心概念,并且与其他知识具有广泛的联系性,地位重要。本节课方程的根与函数的零点是整章内容的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。
本节内容,学生将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系.课标在必修模块1“函数的应用”中,对“函数与方程”提出如下要求:
1、结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.
2、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法.
本课内容是在刚刚学习完了前两章函数性质的基础上,利用函数的图象和性质来判断方程的根的存在性及根的个数,从而了解函数的零点与方程的根的关系以及掌握函数在某个区间上存在零点的判定方法,是前两章内容的延续。本节课的主要教学内容是函数零点的概念和函数零点存在的判定依据,这又为下一节“用二分法求方程近似解”以及为后续的学习提供理论基础。
本节课是培养学生“等价转化思想”、“数形结合思想”、 “方程与函数思想”的优质载体.从上述要求可见,课标只要求以具体函数(特别是二次函数)为载体,了解函数的零点与方程的根的联系;同时,课标强调了通过函数图象的直观展示,让学生了解有关原理和方法.因此,课标引入本节课的内容,旨在让学生学习用函数的性质解决问题(用连续函数的性质判断方程在某一区间上是否有解),体会函数与方程之间的联系性,而在数学原理上没有过高要求.
课标分析
1、知识与技能:结合具体的二次函数图象,判断二次方程根的存在性,从而了解函数的零点与方程根的联系,形成函数零点的概念及零点存在的判定方法。
2、过程与方法:在应用函数研究方程的过程中,体会函数与方程思想,数形结合思想以及化归思想;把从特殊函数零点存在的判定方法上升到一般函数,体现了从特殊到一般的研究方法。
3、情感态度价值观:在求解方程根的“山穷水尽”,到研究函数零点的“柳暗花明”,学生了解数学的发展史,感受探究的乐趣。
2014高考数学几何全攻略
高三数学指导:抓住做题的主要脉络
高考数学题型解题规范2016
数学提分要诀:每天做几道数学题
2014年高考数学第一轮复习的注意5大问题
高考数学冲刺阶段复习重点2016
高三数学学习备考辅导:数学数列知识点
高三数学备考建议:高考数学答题要避免丢三落四
高考数学解析:各类题型基本固定
学好高考数学必备4大技巧
数学宝典:零基础提分秘笈
初一数学下册期末知识点总结
高三女生必读:六招教你提高数学成绩
高三数学备考:对课本内容必须做到了如指掌
高考数学备考决胜妙法
2014年高考数学一轮复习规划
精编高二下学期数学期末备考知识点
高考数学备考复习基础知识总结:集合
2016年初一数学下册期末模拟试题(苏教版)
专家指出“紧紧抓住例题不放”是高考数学提分要领
2016年七年级数学下册期末备考知识点
2016年初三数学下学期期末备考重点复习
高三数学复习策略:课后一分钟回忆法
2014高三生备考必读:高考数学主要考点总结
高考数学各题型归纳2016
2016高考数学考点梳理
2014高三数学:诱导公式大全
高三数学科目高考之前应注意的细节
2016年高考数学最易失分知识点合集
2016年高二数学下册期末知识点复习
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |